Table of Contents

Area and Volume .. 1-25
Charts with Riemann Sums, MVT, Ave. Rates/Values.......... 41-53
Analyzing Graph of f' .. 54-59
Slope Fields with differential Equations 60-70
Related Rates ... 71-77
Accumulation Functions .. 78-91
Implicit Differentiation ... 92-97
Particle Motion .. 98-108
Charts of f, f', f'' ... 109-113
Functions/Misc. .. 114-128
1. Let R be the region bounded by the x-axis, the graph of $y = \sqrt{x}$, and the line $x = 4$.

(a) Find the area of the region R.

(b) Find the value of h such that the vertical line $x = h$ divides the region R into two regions of equal area.

(c) Find the volume of the solid generated when R is revolved about the x-axis.

(d) The vertical line $x = k$ divides the region R into two regions such that when these two regions are revolved about the x-axis, they generate solids with equal volumes. Find the value of k.

(a) $y = \sqrt{x}$

$$A = \int_0^4 \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \bigg|_0^4 = \frac{16}{3} \text{ or } 5.333$$

(b) $\int_0^h \sqrt{x} \, dx = \frac{8}{3}$ or $\int_0^h \sqrt{x} \, dx = \int_h^4 \sqrt{x} \, dx$

$$\frac{2}{3} h^{3/2} = \frac{8}{3} \quad \text{or} \quad \frac{2}{3} h^{3/2} = \frac{16}{3} - \frac{2}{3} h^{3/2}$$

$$h = \frac{3}{\sqrt{16}} \text{ or } 2.520 \text{ or } 2.519$$

(c) $V = \pi \int_0^4 (\sqrt{x})^2 \, dx = \pi \frac{x^2}{2} \bigg|_0^4 = 8\pi$

or $25.133 \text{ or } 25.132$

(d) $\pi \int_0^k (\sqrt{x})^2 \, dx = 4\pi$ or $\pi \int_0^k (\sqrt{x})^2 \, dx = \pi \int_k^4 (\sqrt{x})^2 \, dx$

$$\frac{\pi k^2}{2} = 4\pi \quad \text{or} \quad \frac{\pi k^2}{2} = 8\pi - \frac{\pi k^2}{2}$$

$$k = \sqrt{8} \text{ or } 2.828$$
2. The shaded region, R, is bounded by the graph of $y = x^2$ and the line $y = 4$, as shown in the figure above.

(a) Find the area of R.

(b) Find the volume of the solid generated by revolving R about the x-axis.

(c) There exists a number k, $k > 4$, such that when R is revolved about the line $y = k$, the resulting solid has the same volume as the solid in part (b). Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

\[
\text{(a) Area } = \int_{-2}^{2} (4 - x^2) \, dx
\]
\[
= 2 \int_{0}^{2} (4 - x^2) \, dx
\]
\[
= 2 \left[4x - \frac{x^3}{3} \right]_{0}^{2}
\]
\[
= \frac{32}{3} = 10.666 \text{ or } 10.667
\]

\[
\text{(b) Volume } = \pi \int_{-2}^{2} \left(4^2 - (x^2)^2 \right) \, dx
\]
\[
= 2\pi \int_{0}^{2} (16 - x^4) \, dx
\]
\[
= 2\pi \left[16x - \frac{x^5}{5} \right]_{0}^{2}
\]
\[
= \frac{256\pi}{5} = 160.849 \text{ or } 160.850
\]

\[
\text{(c) } \pi \int_{-2}^{2} [(k - x^2)^2 - (k - 4)^2] \, dx = \frac{256\pi}{5}
\]
Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 - \cos x$, and the y-axis, as shown in the figure above.

(a) Find the area of the region R.

(b) Find the volume of the solid generated when the region R is revolved about the x-axis.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

Region R

$e^{-x^2} = 1 - \cos x$ at $x = 0.941944 = A$

(a) Area $= \int_0^A (e^{-x^2} - (1 - \cos x)) \, dx$

$= 0.590$ or 0.591

(b) Volume $= \pi \int_0^A \left((e^{-x^2})^2 - (1 - \cos x)^2 \right) \, dx$

$= 0.55596\pi = 1.746$ or 1.747

(c) Volume $= \int_0^A \left(e^{-x^2} - (1 - \cos x) \right)^2 \, dx$

$= 0.461$
Question 1

Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y = 2 - x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of $y = 2 - x^3$ and $y = \tan x$.

(a) Find the area of R.
(b) Find the area of S.
(c) Find the volume of the solid generated when S is revolved about the x-axis.

Point of intersection

$2 - x^3 = \tan x$ at $(A, B) = (0.902155, 1.265751)$

(a) Area $R = \int_0^A \tan x \, dx + \int_A^{3\sqrt{2}} (2 - x^3) \, dx = 0.729$
 or

 \quad Area $R = \int_0^B \left((2 - y)^{1/3} - \tan^{-1} y \right) dy = 0.729$
 or

 \quad Area $R = \int_0^{3\sqrt{2}} (2 - x^3) \, dx - \int_0^A (2 - x^3 - \tan x) \, dx = 0.729$

(b) Area $S = \int_0^A (2 - x^3 - \tan x) \, dx = 1.160$ or 1.161
 or

 \quad Area $S = \int_0^B \tan^{-1} y \, dy + \int_0^2 (2 - y)^{1/3} \, dy = 1.160$ or 1.161
 or

 \quad Area S

 \quad $= \int_0^2 (2 - y)^{1/3} \, dy - \int_0^B \left((2 - y)^{1/3} - \tan^{-1} y \right) dy$

 \quad $= 1.160$ or 1.161

(c) Volume $= \pi \int_0^A \left((2 - x^3)^2 - \tan^2 x \right) \, dx$
 \quad $= 2.652\pi$ or 8.331 or 8.332
Let R be the region bounded by the y-axis and the graphs of $y = \frac{x^3}{1 + x^2}$ and $y = 4 - 2x$, as shown in the figure above.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is revolved about the x-axis.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

\[
\text{Region } R
\]
\[
\frac{x^3}{1 + x^2} = 4 - 2x \text{ at } x = 1.487664 = A
\]

(a) Area
\[
\begin{align*}
\text{Area} &= \int_{0}^{A} \left(4 - 2x - \frac{x^3}{1 + x^2}\right)dx \\
&= 3.214 \text{ or } 3.215
\end{align*}
\]

(b) Volume
\[
\begin{align*}
\text{Volume} &= \pi \int_{0}^{A} \left(4 - 2x\right)^2 - \left(\frac{x^3}{1 + x^2}\right)^2 dx \\
&= 31.884 \text{ or } 31.885 \text{ or } 10.149\pi
\end{align*}
\]

(c) Volume
\[
\begin{align*}
\text{Volume} &= \int_{0}^{A} \left(4 - 2x - \frac{x^3}{1 + x^2}\right)^2 dx \\
&= 8.997
\end{align*}
\]
AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 1

Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \ln x$.

(a) Find the area of the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and $x = 1$.

(b) Find the volume of the solid generated when the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and $x = 1$ is revolved about the line $y = 4$.

(c) Let h be the function given by $h(x) = f(x) - g(x)$. Find the absolute minimum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$, and find the absolute maximum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$. Show the analysis that leads to your answers.

(a) Area $= \int_{\frac{1}{2}}^{1} (e^x - \ln x) \, dx = 1.222$ or 1.223

(b) Volume $= \pi \int_{\frac{1}{2}}^{1} \left((4 - \ln x)^2 - (4 - e^x)^2 \right) \, dx$

$= 7.515\pi$ or 23.609

(c) $h'(x) = f'(x) - g'(x) = e^x - \frac{1}{x} = 0$

$x = 0.567143$

Absolute minimum value and absolute maximum value occur at the critical point or at the endpoints.

$h(0.567143) = 2.330$

$h(0.5) = 2.3418$

$h(1) = 2.718$

The absolute minimum is 2.330.
The absolute maximum is 2.718.

Note: Errors in computation come off the third point.
Question 1

Let \(R \) be the shaded region bounded by the graphs of \(y = \sqrt{x} \) and \(y = e^{-3x} \) and the vertical line \(x = 1 \), as shown in the figure above.

(a) Find the area of \(R \).

(b) Find the volume of the solid generated when \(R \) is revolved about the horizontal line \(y = 1 \).

(c) The region \(R \) is the base of a solid. For this solid, each cross section perpendicular to the \(x \)-axis is a rectangle whose height is 5 times the length of its base in region \(R \). Find the volume of this solid.

Point of intersection
\[e^{-3x} = \sqrt{x} \]

at \((T, S) = (0.238734, 0.488604)\)

(a) Area = \(\int_{T}^{1} (\sqrt{x} - e^{-3x}) \, dx \)

= 0.442 or 0.443

(b) Volume = \(\pi \int_{T}^{1} \left((1 - e^{-3x})^2 - (1 - \sqrt{x})^2 \right) \, dx \)

= 0.453\pi \) or 1.423 or 1.424

(c) Length = \(\sqrt{x} - e^{-3x} \)

Height = \(5(\sqrt{x} - e^{-3x}) \)

Volume = \(\int_{T}^{1} 5(\sqrt{x} - e^{-3x})^2 \, dx = 1.554 \)
Let R be the region enclosed by the graph of $y = \sqrt{x-1}$, the vertical line $x = 10$, and the x-axis.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is revolved about the horizontal line $y = 3$.

(c) Find the volume of the solid generated when R is revolved about the vertical line $x = 10$.

(a) Area $= \int_{1}^{10} \sqrt{x - 1} \, dx = 18$

(b) Volume $= \pi \int_{1}^{10} \left(9 - (3 - \sqrt{x - 1})^2\right) \, dx$

$= 212.057$ or 212.058

(c) Volume $= \pi \int_{0}^{3} \left(10 - (y^2 + 1)^2\right) \, dy$

$= 407.150$
Let \(f \) and \(g \) be the functions given by \(f(x) = 2x(1-x) \) and \
\[g(x) = 3(x-1)\sqrt{x} \] for \(0 \leq x \leq 1 \). The graphs of \(f \) and \(g \) are shown in the figure above.

(a) Find the area of the shaded region enclosed by the graphs of \(f \) and \(g \).

(b) Find the volume of the solid generated when the shaded region enclosed by the graphs of \(f \) and \(g \) is revolved about the horizontal line \(y = 2 \).

(c) Let \(h \) be the function given by \(h(x) = kx(1-x) \) for \(0 \leq x \leq 1 \). For each \(k > 0 \), the region (not shown) enclosed by the graphs of \(h \) and \(g \) is the base of a solid with square cross sections perpendicular to the \(x \)-axis. There is a value of \(k \) for which the volume of this solid is equal to 15. Write, but do not solve, an equation involving an integral expression that could be used to find the value of \(k \).

(a) Area
\[\int_0^1 (f(x) - g(x)) \, dx \]
\[= \int_0^1 (2x(1-x) - 3(x-1)\sqrt{x}) \, dx = 1.133 \]

(b) Volume
\[\pi \int_0^1 (2 - g(x))^2 - (2 - f(x))^2 \, dx \]
\[= \pi \int_0^1 (2 - 3(x-1)\sqrt{x})^2 - (2 - 2x(1-x))^2 \, dx \]
\[= 16.179 \]

(c) Volume
\[\int_0^1 (h(x) - g(x))^2 \, dx \]
\[= \int_0^1 (kx(1-x) - 3(x-1)\sqrt{x})^2 \, dx = 15 \]
Question 1

Let \(f \) and \(g \) be the functions given by \(f(x) = 1 + \sin(2x) \) and \(g(x) = e^{x^2} \). Let \(R \) be the shaded region in the first quadrant enclosed by the graphs of \(f \) and \(g \) as shown in the figure above.

(a) Find the area of \(R \).

(b) Find the volume of the solid generated when \(R \) is revolved about the \(x \)-axis.

(c) The region \(R \) is the base of a solid. For this solid, the cross sections perpendicular to the \(x \)-axis are semicircles with diameters extending from \(y = f(x) \) to \(y = g(x) \). Find the volume of this solid.

The graphs of \(f \) and \(g \) intersect in the first quadrant at \((S, T) = (1.13569, 1.76446)\).

(a) Area

\[
\text{Area} = \int_{0}^{S} (f(x) - g(x)) \, dx
\]

\[
= \int_{0}^{S} (1 + \sin(2x) - e^{x^2}) \, dx
\]

\[
= 0.429
\]

(b) Volume

\[
\text{Volume} = \pi \int_{0}^{S} ((f(x))^2 - (g(x))^2) \, dx
\]

\[
= \pi \int_{0}^{S} ((1 + \sin(2x))^2 - (e^{x^2})^2) \, dx
\]

\[
= 4.266 \text{ or } 4.267
\]

(c) Volume

\[
\text{Volume} = \int_{0}^{S} \frac{\pi}{2} \left(\frac{f(x) - g(x)}{2} \right)^2 \, dx
\]

\[
= \int_{0}^{S} \frac{\pi}{2} \left(\frac{1 + \sin(2x) - e^{x^2}}{2} \right)^2 \, dx
\]

\[
= 0.077 \text{ or } 0.078
\]
Question 1

Let \(f \) and \(g \) be the functions given by \(f(x) = \frac{1}{4} + \sin(\pi x) \) and \(g(x) = 4^{-x} \). Let \(R \) be the shaded region in the first quadrant enclosed by the \(y \)-axis and the graphs of \(f \) and \(g \), and let \(S \) be the shaded region in the first quadrant enclosed by the graphs of \(f \) and \(g \), as shown in the figure above.

(a) Find the area of \(R \).

(b) Find the area of \(S \).

(c) Find the volume of the solid generated when \(S \) is revolved about the horizontal line \(y = -1 \).

\[
\begin{align*}
\int_0^a (g(x) - f(x)) \, dx &= 0.064 \text{ or } 0.065 \\
\int_a^1 (f(x) - g(x)) \, dx &= 0.410 \\
\pi \int_a^1 \left((f(x) + 1)^2 - (g(x) + 1)^2\right) \, dx &= 4.558 \text{ or } 4.559
\end{align*}
\]
Question 1

Let f be the function given by $f(x) = \frac{x^3}{4} - \frac{x^2}{3} - \frac{x}{2} + 3\cos x$. Let R be the shaded region in the second quadrant bounded by the graph of f, and let S be the shaded region bounded by the graph of f and line ℓ, the line tangent to the graph of f at $x = 0$, as shown above.

(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $y = -2$.
(c) Write, but do not evaluate, an integral expression that can be used to find the area of S.

For $x < 0$, $f(x) = 0$ when $x = -1.37312$.

Let $P = -1.37312$.

(a) Area of $R = \int_{-1.37312}^{0} f(x) \, dx = 2.903$

(b) Volume $= \pi \int_{-1.37312}^{0} \left((f(x) + 2)^2 - 4 \right) \, dx = 59.361$

(c) The equation of the tangent line ℓ is $y = 3 - \frac{1}{2}x$.

The graph of f and line ℓ intersect at $A = 3.38987$.

Area of $S = \int_{0}^{3.38987} \left(\left(3 - \frac{1}{2}x \right) - f(x) \right) \, dx$.

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).
Let R be the shaded region bounded by the graph of $y = \ln x$ and the line $y = x - 2$, as shown above.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is rotated about the horizontal line $y = -3$.

(c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

\[
\ln(x) = x - 2 \quad \text{when} \quad x = 0.15859 \quad \text{and} \quad 3.14619.
\]

Let $S = 0.15859$ and $T = 3.14619$

(a) Area of $R = \int_{S}^{T} (\ln(x) - (x - 2)) \, dx = 1.949$

(b) Volume $= \pi \int_{S}^{T} \left((\ln(x) + 3)^2 - (x - 2 + 3)^2 \right) \, dx$

$= 34.198$ or 34.199

(c) Volume $= \pi \int_{S-2}^{T-2} \left((y + 2)^2 - (e^y)^2 \right) \, dy$

1 : integrand
3 : 1 : limits
1 : answer

1 : limits, constant, and answer

2 : integrand
3 : 2 : integrand
1 : limits and constant
Let R be the region bounded by the graph of $y = e^{2x-x^2}$ and the horizontal line $y = 2$, and let S be the region bounded by the graph of $y = e^{2x-x^2}$ and the horizontal lines $y = 1$ and $y = 2$, as shown above.

(a) Find the area of R.
(b) Find the area of S.
(c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y = 1$.

\[
e^{2x-x^2} = 2 \text{ when } x = 0.446057, 1.553943
\]
Let $P = 0.446057$ and $Q = 1.553943$

(a) Area of $R = \int_P^Q \left(e^{2x-x^2} - 2\right) dx = 0.514$

(b) $e^{2x-x^2} = 1 \text{ when } x = 0, 2$

Area of $S = \int_0^2 \left(e^{2x-x^2} - 1\right) dx - \text{Area of } R$

\[= 2.06016 - \text{Area of } R = 1.546
\]

OR

\[\int_0^P \left(e^{2x-x^2} - 1\right) dx + (Q - P) \cdot 1 + \int_Q^2 \left(e^{2x-x^2} - 1\right) dx
\]

\[= 0.219064 + 1.107886 + 0.219064 = 1.546
\]

(c) Volume $= \pi \int_P^Q \left(\left(e^{2x-x^2} - 1\right)^2 - (2 - 1)^2\right) dx$
Let R be the region in the first and second quadrants bounded above by the graph of $y = \frac{20}{1 + x^2}$ and below by the horizontal line $y = 2$.

(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the x-axis.
(c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles. Find the volume of this solid.

\[
\frac{20}{1 + x^2} = 2 \quad \text{when} \quad x = \pm 3
\]

(a) Area $= \int_{-3}^{3} \left(\frac{20}{1 + x^2} - 2 \right) \, dx = 37.961$ or 37.962

1 : correct limits in an integral in (a), (b), or (c)
2 : \{ 1 : integrand, 1 : answer \}

(b) Volume $= \pi \int_{-3}^{3} \left(\left(\frac{20}{1 + x^2} \right)^2 - 2^2 \right) \, dx = 1871.190$

3 : \{ 2 : integrand, 1 : answer \}

(c) Volume $= \frac{\pi}{2} \int_{-3}^{3} \left(\frac{1}{2} \left(\frac{20}{1 + x^2} - 2 \right) \right)^2 \, dx$

$= \frac{\pi}{8} \int_{-3}^{3} \left(\frac{20}{1 + x^2} - 2 \right)^2 \, dx = 174.268$
Let R be the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{3}$.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is rotated about the vertical line $x = -1$.

(c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the y-axis are squares. Find the volume of this solid.

The graphs of $y = \sqrt{x}$ and $y = \frac{x}{3}$ intersect at the points $(0, 0)$ and $(9, 3)$.

(a) \[\int_0^9 \left(\sqrt{x} - \frac{x}{3} \right) dx = 4.5 \]

OR

\[\int_0^3 (3y - y^2) dy = 4.5 \]

(b) \[\pi \int_0^3 \left((3y + 1)^2 - (y^2 + 1)^2 \right) dy \]
\[= \frac{207\pi}{5} = 130.061 \text{ or } 130.062 \]

(c) \[\int_0^3 (3y - y^2)^2 dy = 8.1 \]
Let R be the region bounded by the graphs of $y = \sin(\pi x)$ and $y = x^3 - 4x$, as shown in the figure above.

(a) Find the area of R.

(b) The horizontal line $y = -2$ splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by $h(x) = 3 - x$. Find the volume of water in the pond.

(a) $\sin(\pi x) = x^3 - 4x$ at $x = 0$ and $x = 2$
Area $= \int_0^2 (\sin(\pi x) - (x^3 - 4x)) \, dx = 4$

(b) $x^3 - 4x = -2$ at $r = 0.5391889$ and $s = 1.6751309$
The area of the stated region is $\int_r^s (-2 - (x^3 - 4x)) \, dx$

(c) Volume $= \int_0^2 \left(\sin(\pi x) - (x^3 - 4x)\right)^2 \, dx = 9.978$

(d) Volume $= \int_0^2 (3 - x)\left(\sin(\pi x) - (x^3 - 4x)\right) \, dx = 8.369$ or 8.370
Consider the curve defined by the equation \(y + \cos y = x + 1 \) for \(0 \leq y \leq 2\pi \).

(a) Find \(\frac{dy}{dx} \) in terms of \(y \).

(b) Write an equation for each vertical tangent to the curve.

(c) Find \(\frac{d^2y}{dx^2} \) in terms of \(y \).
1992 AB4/BC1

Solution

(a) \(\frac{dy}{dx} - \sin y \frac{dy}{dx} = 1 \)

\(\frac{dy}{dx} (1 - \sin y) = 1 \)

\(\frac{dy}{dx} = \frac{1}{1 - \sin y} \)

(b) \(\frac{dy}{dx} \) undefined when \(\sin y = 1 \)

\(y = \frac{\pi}{2} \)

\(\frac{\pi}{2} + 0 = x + 1 \)

\(x = \frac{\pi}{2} - 1 \)

(c) \(\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{1}{1 - \sin y} \right) \)

\(= -\frac{\cos y \frac{dy}{dx}}{(1 - \sin y)^2} \)

\(= \cos y \frac{1}{(1 - \sin y)^2} \)

\(= \frac{\cos y}{(1 - \sin y)^3} \)
Let \(R \) be the region between the graphs of \(y = 1 + \sin(\pi x) \) and \(y = x^2 \) from \(x = 0 \) to \(x = 1 \).

(a) Find the area of \(R \).

(b) Set up, but do not integrate an integral expression in terms of a single variable for the volume of the solid generated when \(R \) is revolved about the \(x \)-axis.

(c) Set up, but do not integrate an integral expression in terms of a single variable for the volume of the solid generated when \(R \) is revolved about the \(y \)-axis.
1991 AB2

Solution

(a) \[A = \int_{0}^{1} (1 + \sin(\pi x) - x^2) \, dx \]
\[= \left[x - \frac{1}{\pi} \cos(\pi x) - \frac{1}{3} x^3 \right]_{0}^{1} \]
\[= \left(1 - \frac{1}{\pi} (-1) - \frac{1}{3} \right) - \left(0 - \frac{1}{\pi} - 0 \right) \]
\[= \frac{2}{3} + \frac{2}{\pi} \]

(b) \[V = \pi \int_{0}^{1} (1 + \sin(\pi x))^2 - x^4 \, dx \]

or
\[2\pi \int_{0}^{1} y^{3/2} \, dy + 2\pi \int_{1}^{2} y \left(1 - \frac{2}{\pi} \arcsin(y - 1) \right) \, dy \]

(c) \[V = 2\pi \int_{0}^{1} x \left(1 + \sin(\pi x) - x^2 \right) \, dx \]

or
\[\pi \int_{0}^{1} y \, dy + \pi \int_{1}^{2} \left(1 - \frac{1}{\pi} \arcsin(y - 1) \right)^2 - \left(\frac{1}{\pi} \arcsin(y - 1) \right)^2 \, dy \]
Let R be the region enclosed by the graphs of $y = e^x$, $y = (x - 1)^2$, and the line $x = 1$.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is revolved about the x-axis.

(c) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the y-axis.
1990 AB3

Solution

(a) \(A = \int_0^1 e^x - (x-1)^2 \, dx \)
\[
= \int_0^1 e^x - x^2 + 2x - 1 \, dx \\
= e^x \Big|_0^1 - \frac{1}{3} (x-1)^3 \Big|_0^1 \\
= (e-1) - \frac{1}{3} = e - \frac{4}{3}
\]

(b) \(V = \pi \int_0^1 e^{2x} - (x-1)^4 \, dx \)
\[
= \pi \left[\frac{e^{2x}}{2} \right]_0^1 - \pi \left[\frac{1}{5} (x-1)^5 \right]_0^1 \\
= \pi \left(\frac{e^2}{2} - \frac{1}{2} \right) - \pi \left(\frac{1}{5} \right) = \pi \left(\frac{e^2 - 7}{10} \right)
\]

or

\[
V = 2\pi \int_0^1 y \left[1 - (1 - \sqrt{y}) \right] dy + 2\pi \int_1^e y(1 - \ln y) \, dy \\
= 2\pi \cdot \frac{2}{5} y^{5/2} \Big|_0^1 + 2\pi \left[\frac{1}{2} y^2 - \left(\frac{1}{2} y^2 \ln y - \frac{1}{4} y^2 \right) \right]_1^e \\
= \frac{4}{5} \pi + 2\pi \left[\frac{1}{4} e^2 - \frac{3}{4} \right] = \pi \left(\frac{e^2 - 7}{10} \right)
\]

(c) \(V = 2\pi \int_0^1 x \left[e^x - (x-1)^2 \right] \, dx \)

or

\[
V = \pi \int_0^1 1 - (1 - \sqrt{y})^2 \, dy + \pi \int_1^e 1 - (\ln y)^2 \, dy
\]
Let R be the region in the first quadrant enclosed by the graph of $y = \sqrt{6x + 4}$, the line $y = 2x$, and the y-axis.

(a) Find the area of R.

(b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the x-axis.

(c) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the y-axis.
1989 AB2
Solution

(a) Area \[\int_0^2 \sqrt{6x + 4} - 2x \, dx \]
\[= \frac{1}{6} \cdot \frac{2}{3} (6x + 4)^{3/2} - x^2 \bigg|_0^2 \]
\[= \left(\frac{64}{9} - 4 \right) \frac{8}{9} = \frac{20}{9} \]

(b) Volume about x-axis
\[V = \pi \int_0^2 (6x + 4)^2 - 4x^2 \, dx \]

or
\[V = \pi \int_0^2 (6x + 4) \, dx - \frac{32\pi}{3} \]

(c) Volume about y-axis
\[V = 2\pi \int_0^2 x \left(\sqrt{6x + 4} - 2x \right) \, dx \]

or
\[V = \pi \int_0^4 \left(\frac{y}{2} \right)^2 - \pi \int_2^4 \left(\frac{y^2 - 4}{6} \right)^2 \, dy \]
AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 2

The rate at which people enter an amusement park on a given day is modeled by the function \(E(t) \) defined by

\[
E(t) = \frac{15600}{t^2 - 24t + 160}.
\]

The rate at which people leave the same amusement park on the same day is modeled by the function \(L(t) \) defined by

\[
L(t) = \frac{9890}{t^2 - 38t + 370}.
\]

Both \(E(t) \) and \(L(t) \) are measured in people per hour and time \(t \) is measured in hours after midnight. These functions are valid for \(9 \leq t \leq 23 \), the hours during which the park is open. At time \(t = 9 \), there are no people in the park.

(a) How many people have entered the park by 5:00 p.m. (\(t = 17 \))? Round answer to the nearest whole number.

(b) The price of admission to the park is $15 until 5:00 p.m. (\(t = 17 \)). After 5:00 p.m., the price of admission to the park is $11. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.

(c) Let \(H(t) = \int_0^t (E(x) - L(x))\,dx \) for \(9 \leq t \leq 23 \). The value of \(H(17) \) to the nearest whole number is 3725.

Find the value of \(H'(17) \) and explain the meaning of \(H(17) \) and \(H'(17) \) in the context of the park.

(d) At what time \(t \), for \(9 \leq t \leq 23 \), does the model predict that the number of people in the park is a maximum?

(a) \(\int_9^{17} E(t)\,dt = 6004.270 \)

6004 people entered the park by 5 pm.

(b) \(15 \int_9^{17} E(t)\,dt + 11 \int_9^{23} E(t)\,dt = 104048.165 \)

The amount collected was $104,048.

or

\(\int_9^{23} E(t)\,dt = 1271.283 \)

1271 people entered the park between 5 pm and 11 pm, so the amount collected was $15 \cdot (6004) + 11 \cdot (1271) = 104,041.

(c) \(H'(17) = E(17) - L(17) = -380.281 \)

There were 3725 people in the park at \(t = 17 \).

The number of people in the park was decreasing at the rate of approximately 380 people/hr at time \(t = 17 \).

(d) \(H'(t) = E(t) - L(t) = 0 \)

\(t = 15.794 \) or 15.795

\[\begin{align*}
1 : & \text{ limits} \\
3 : & \begin{cases}
1 : \text{ integrand} \\
1 : \text{ answer} \\
\end{cases} \\
1 : & \text{ setup} \\
\end{align*} \]

\[\begin{align*}
1 : & \text{ value of } H'(17) \\
2 : & \text{ meanings} \\
3 : & \begin{cases}
1 : \text{ meaning of } H(17) \\
1 : \text{ meaning of } H'(17) \\
< -1 > \text{ if no reference to } t = 17 \\
\end{cases} \\
2 : & \begin{cases}
1 : E(t) - L(t) = 0 \\
1 : \text{ answer} \\
\end{cases} \\
\end{align*} \]
A tank contains 125 gallons of heating oil at time \(t = 0 \). During the time interval \(0 \leq t \leq 12 \) hours, heating oil is pumped into the tank at the rate
\[
H(t) = 2 + \frac{10}{(1 + \ln(t + 1))} \text{ gallons per hour.}
\]
During the same time interval, heating oil is removed from the tank at the rate
\[
R(t) = 12 \sin \left(\frac{t^2}{17} \right) \text{ gallons per hour.}
\]

(a) How many gallons of heating oil are pumped into the tank during the time interval \(0 \leq t \leq 12 \) hours?

(b) Is the level of heating oil in the tank rising or falling at time \(t = 6 \) hours? Give a reason for your answer.

(c) How many gallons of heating oil are in the tank at time \(t = 12 \) hours?

(d) At what time \(t \), for \(0 \leq t \leq 12 \), is the volume of heating oil in the tank the least? Show the analysis that leads to your conclusion.

(a) \[
\int_0^{12} H(t) \, dt = 70.570 \text{ or } 70.571
\]

(b) \[
H(6) - R(6) = -2.924,
\]
so the level of heating oil is falling at \(t = 6 \).

(c) \[
125 + \int_0^{12} (H(t) - R(t)) \, dt = 122.025 \text{ or } 122.026
\]

(d) The absolute minimum occurs at a critical point or an endpoint.
\[
H(t) - R(t) = 0 \text{ when } t = 4.790 \text{ and } t = 11.318.
\]
The volume increases until \(t = 4.790 \), then decreases until \(t = 11.318 \), then increases, so the absolute minimum will be at \(t = 0 \) or at \(t = 11.318 \).
\[
125 + \int_0^{11.318} (H(t) - R(t)) \, dt = 120.738
\]
Since the volume is 125 at \(t = 0 \), the volume is least at \(t = 11.318 \).
Question 2

For $0 \leq t \leq 31$, the rate of change of the number of mosquitoes on Tropical Island at time t days is modeled by $R(t) = 5\sqrt{t} \cos\left(\frac{t}{5}\right)$ mosquitoes per day. There are 1000 mosquitoes on Tropical Island at time $t = 0$.

(a) Show that the number of mosquitoes is increasing at time $t = 6$.

(b) At time $t = 6$, is the number of mosquitoes increasing at an increasing rate, or is the number of mosquitoes increasing at a decreasing rate? Give a reason for your answer.

(c) According to the model, how many mosquitoes will be on the island at time $t = 31$? Round your answer to the nearest whole number.

(d) To the nearest whole number, what is the maximum number of mosquitoes for $0 \leq t \leq 31$? Show the analysis that leads to your conclusion.

(a) Since $R(6) = 4.438 > 0$, the number of mosquitoes is increasing at $t = 6$.

(b) $R'(6) = -1.913$

Since $R'(6) < 0$, the number of mosquitoes is increasing at a decreasing rate at $t = 6$.

(c) $1000 + \int_{0}^{31} R(t) \, dt = 964.335$

To the nearest whole number, there are 964 mosquitoes.

(d) $R(t) = 0$ when $t = 0$, $t = 2.5\pi$, or $t = 7.5\pi$

$R(t) > 0$ on $0 < t < 2.5\pi$

$R(t) < 0$ on $2.5\pi < t < 7.5\pi$

$R(t) > 0$ on $7.5\pi < t < 31$

The absolute maximum number of mosquitoes occurs at $t = 2.5\pi$ or at $t = 31$.

$1000 + \int_{0}^{2.5\pi} R(t) \, dt = 1039.357$,

There are 964 mosquitoes at $t = 31$, so the maximum number of mosquitoes is 1039, to the nearest whole number.
Question 1

Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$F(t) = 82 + 4\sin\left(\frac{t}{2}\right) \text{ for } 0 \leq t \leq 30,$$

where $F(t)$ is measured in cars per minute and t is measured in minutes.

(a) To the nearest whole number, how many cars pass through the intersection over the 30-minute period?

(b) Is the traffic flow increasing or decreasing at $t = 7$? Give a reason for your answer.

(c) What is the average value of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.

(d) What is the average rate of change of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.

(a) \[\int_0^{30} F(t) \, dt = 2474 \text{ cars}\]

(b) $F'(7) = -1.872$ or -1.873

Since $F'(7) < 0$, the traffic flow is decreasing at $t = 7$.

(c) \[\frac{1}{5} \int_{10}^{15} F(t) \, dt = 81.899 \text{ cars/min}\]

(d) \[\frac{F(15) - F(10)}{15 - 10} = 1.517 \text{ or } 1.518 \text{ cars/min}^2\]

Units of cars/min in (c) and cars/min2 in (d)
Question 2

A water tank at Camp Newton holds 1200 gallons of water at time $t = 0$. During the time interval $0 \leq t \leq 18$ hours, water is pumped into the tank at the rate

$$W(t) = 95\sqrt{t} \sin^2 \left(\frac{t}{6}\right) \text{ gallons per hour.}$$

During the same time interval, water is removed from the tank at the rate

$$R(t) = 275\sin^2 \left(\frac{t}{3}\right) \text{ gallons per hour.}$$

(a) Is the amount of water in the tank increasing at time $t = 15$? Why or why not?

(b) To the nearest whole number, how many gallons of water are in the tank at time $t = 18$?

(c) At what time t, for $0 \leq t \leq 18$, is the amount of water in the tank at an absolute minimum? Show the work that leads to your conclusion.

(d) For $t > 18$, no water is pumped into the tank, but water continues to be removed at the rate $R(t)$ until the tank becomes empty. Let k be the time at which the tank becomes empty. Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

(a) No; the amount of water is not increasing at $t = 15$ since $W(15) - R(15) = -121.09 < 0$.

(b) $1200 + \int_0^{18} (W(t) - R(t)) \, dt = 1309.788$

1310 gallons

(c) $W(t) - R(t) = 0$

$t = 0, 6.4948, 12.9748$

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>gallons of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>6.495</td>
<td>525</td>
</tr>
<tr>
<td>12.975</td>
<td>1697</td>
</tr>
<tr>
<td>18</td>
<td>1310</td>
</tr>
</tbody>
</table>

The values at the endpoints and the critical points show that the absolute minimum occurs when $t = 6.494$ or 6.495.

(d) $\int_{18}^{k} R(t) \, dt = 1310$
The tide removes sand from Sandy Point Beach at a rate modeled by the function \(R \), given by
\[
R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right).
\]
A pumping station adds sand to the beach at a rate modeled by the function \(S \), given by
\[
S(t) = \frac{15t}{1 + 3t}.
\]
Both \(R(t) \) and \(S(t) \) have units of cubic yards per hour and \(t \) is measured in hours for \(0 \leq t \leq 6 \). At time \(t = 0 \), the beach contains 2500 cubic yards of sand.

(a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.

(b) Write an expression for \(Y(t) \), the total number of cubic yards of sand on the beach at time \(t \).

(c) Find the rate at which the total amount of sand on the beach is changing at time \(t = 4 \).

(d) For \(0 \leq t \leq 6 \), at what time \(t \) is the amount of sand on the beach a minimum? What is the minimum value? Justify your answers.

\[
\begin{array}{|c|c|}
\hline
 t & Y(t) \\
\hline
 0 & 2500 \\
 a & 2492.3694 \\
 6 & 2493.2766 \\
\hline
\end{array}
\]

The amount of sand is a minimum when \(t = 5.117 \) or 5.118 hours. The minimum value is 2492.369 cubic yards.
At an intersection in Thomasville, Oregon, cars turn left at the rate \(L(t) = 60\sqrt{t}\sin^2\left(\frac{t}{3}\right) \) cars per hour over the time interval \(0 \leq t \leq 18 \) hours. The graph of \(y = L(t) \) is shown above.

(a) To the nearest whole number, find the total number of cars turning left at the intersection over the time interval \(0 \leq t \leq 18 \) hours.

(b) Traffic engineers will consider turn restrictions when \(L(t) \geq 150 \) cars per hour. Find all values of \(t \) for which \(L(t) \geq 150 \) and compute the average value of \(L \) over this time interval. Indicate units of measure.

(c) Traffic engineers will install a signal if there is any two-hour time interval during which the product of the total number of cars turning left and the total number of oncoming cars traveling straight through the intersection is greater than 200,000. In every two-hour time interval, 500 oncoming cars travel straight through the intersection. Does this intersection require a traffic signal? Explain the reasoning that leads to your conclusion.

\[\int_{0}^{18} L(t) \, dt \approx 1658 \text{ cars} \]

\(L(t) = 150 \) when \(t = 12.42831, 16.12166 \)

Let \(R = 12.42831 \) and \(S = 16.12166 \)

\(L(t) \geq 150 \) for \(t \) in the interval \([R, S]\)

\[\frac{1}{S-R} \int_{R}^{S} L(t) \, dt = 199.426 \text{ cars per hour} \]

(c) For the product to exceed 200,000, the number of cars turning left in a two-hour interval must be greater than 400.

\[\int_{13}^{15} L(t) \, dt = 431.931 > 400 \]

OR

The number of cars turning left will be greater than 400 on a two-hour interval if \(L(t) \geq 200 \) on that interval.

\(L(t) \geq 200 \) on any two-hour subinterval of

\[[13.25304, 15.32386] \]

Yes, a traffic signal is required.
The amount of water in a storage tank, in gallons, is modeled by a continuous function on the time interval $0 \leq t \leq 7$, where t is measured in hours. In this model, rates are given as follows:

(i) The rate at which water enters the tank is \(f(t) = 100r^2 \sin(\sqrt{t}) \) gallons per hour for $0 \leq t \leq 7$.

(ii) The rate at which water leaves the tank is \(g(t) = \begin{cases} 250 & \text{for } 0 \leq t < 3 \\ 2000 & \text{for } 3 < t \leq 7 \end{cases} \) gallons per hour.

The graphs of f and g, which intersect at $t = 1.617$ and $t = 5.076$, are shown in the figure above. At time $t = 0$, the amount of water in the tank is 5000 gallons.

(a) How many gallons of water enter the tank during the time interval $0 \leq t \leq 7$? Round your answer to the nearest gallon.

(b) For $0 \leq t \leq 7$, find the time intervals during which the amount of water in the tank is decreasing. Give a reason for each answer.

(c) For $0 \leq t \leq 7$, at what time t is the amount of water in the tank greatest? To the nearest gallon, compute the amount of water at this time. Justify your answer.

\[\int_{0}^{7} f(t) \, dt = 8264 \text{ gallons} \]

(b) The amount of water in the tank is decreasing on the intervals $0 \leq t \leq 1.617$ and $3 \leq t \leq 5.076$ because $f(t) < g(t)$ for $0 \leq t < 1.617$ and $3 < t < 5.076$.

(c) Since $f(t) - g(t)$ changes sign from positive to negative only at $t = 3$, the candidates for the absolute maximum are at $t = 0$, 3, and 7.

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>gallons of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>3</td>
<td>$5000 + \int_{0}^{3} f(t) , dt - 250(3) = 5126.591$</td>
</tr>
<tr>
<td>7</td>
<td>$5126.591 + \int_{3}^{7} f(t) , dt - 2000(4) = 4513.807$</td>
</tr>
</tbody>
</table>

The amount of water in the tank is greatest at 3 hours. At that time, the amount of water in the tank, rounded to the nearest gallon, is 5127 gallons.
For time $t \geq 0$ hours, let $r(t) = 120 \left(1 - e^{-10t^2} \right)$ represent the speed, in kilometers per hour, at which a car travels along a straight road. The number of liters of gasoline used by the car to travel x kilometers is modeled by $g(x) = 0.05x \left(1 - e^{-x/2} \right)$.

(a) How many kilometers does the car travel during the first 2 hours?

(b) Find the rate of change with respect to time of the number of liters of gasoline used by the car when $t = 2$ hours. Indicate units of measure.

(c) How many liters of gasoline have been used by the car when it reaches a speed of 80 kilometers per hour?

(a) $\int_0^2 r(t) \, dt = 206.370$ kilometers

(b) $\frac{dg}{dt} = \frac{dg}{dx} \cdot \frac{dx}{dt}; \quad \frac{dx}{dt} = r(t)$

$$\frac{dg}{dt} \bigg|_{t=2} = \frac{dg}{dx} \bigg|_{x=206.370} \cdot r(2) = (0.050)(120) = 6 \text{ liters/hour}$$

(c) Let T be the time at which the car’s speed reaches 80 kilometers per hour.

Then, $r(T) = 80$ or $T = 0.331453$ hours.

At time T, the car has gone $x(T) = \int_0^T r(t) \, dt = 10.794097$ kilometers

and has consumed $g(x(T)) = 0.537$ liters of gasoline.
Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at a constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder with both its radius and height changing with time. (Note: The volume V of a right circular cylinder with radius r and height h is given by $V = \pi r^2 h$.)

(a) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of the oil slick with respect to time, in centimeters per minute?

(b) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is $R(t) = 400\sqrt{t}$ cubic centimeters per minute, where t is the time in minutes since the device began working. Oil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time t when the oil slick reaches its maximum volume. Justify your answer.

(c) By the time the recovery device began removing oil, 60,000 cubic centimeters of oil had already leaked. Write, but do not evaluate, an expression involving an integral that gives the volume of oil at the time found in part (b).

(a) When $r = 100$ cm and $h = 0.5$ cm, $\frac{dV}{dt} = 2000$ cm3/min and $\frac{dr}{dt} = 2.5$ cm/min.

$$\frac{dV}{dt} = 2\pi r \frac{dr}{dt} h + \pi r^2 \frac{dh}{dt}$$

$$2000 = 2\pi (100)(2.5)(0.5) + \pi (100)^2 \frac{dh}{dt}$$

$$\frac{dh}{dt} = 0.038 \text{ or } 0.039 \text{ cm/min}$$

(b) $\frac{dV}{dt} = 2000 - R(t)$, so $\frac{dV}{dt} = 0$ when $R(t) = 2000$.

This occurs when $t = 25$ minutes.

Since $\frac{dV}{dt} > 0$ for $0 < t < 25$ and $\frac{dV}{dt} < 0$ for $t > 25$,

the oil slick reaches its maximum volume 25 minutes after the device begins working.

(c) The volume of oil, in cm3, in the slick at time $t = 25$ minutes is given by $60,000 + \int_0^{25} (2000 - R(t)) \, dt$.

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.
Oil is being pumped continuously from a certain oil well at a rate proportional to the amount of oil left in the well; that is, \(\frac{dy}{dt} = ky \), where \(y \) is the amount of oil left in the well at any time \(t \). Initially there were 1,000,000 gallons of oil in the well, and 6 years later there were 500,000 gallons remaining. It will no longer be profitable to pump oil when there are fewer than 50,000 gallons remaining.

(a) Write an equation for \(y \), the amount of oil remaining in the well at any time \(t \).

(b) At what rate is the amount of oil in the well decreasing when there are 600,000 gallons of oil remaining?

(c) In order not to lose money, at what time \(t \) should oil no longer be pumped from the well?
1989 AB6
Solution

(a) \[\frac{dy}{dt} = ky \]
\[y = Ce^{kt} \]

or

\[\frac{dy}{y} = k \, dt \]
\[\ln |y| = kt + C_i \]
\[y = e^{kt+C_i} \]

\[t = 0 \Rightarrow C = 10^6, \ C_i = \ln 10^6 \]

\[\therefore y = 10^6 e^{kt} \]

\[t = 6 \Rightarrow \frac{1}{2} = e^{6k} \]

\[\therefore k = -\frac{\ln 2}{6} \]

\[y = 10^6 e^{6 \cdot \frac{-\ln 2}{6}} = 10^6 \cdot 2^{-\frac{t}{6}} \]

(b) \[\frac{dy}{dt} = ky = -\frac{\ln 2}{6} \cdot 6 \cdot 10^5 \]

\[= -10^5 \ln 2 \]

Decreasing at \(10^5 \ln 2 \) gal/year

(c) \[5 \cdot 10^4 = 10^6 e^{kt} \]

\[\therefore kt = -\ln 20 \]

\[\therefore t = -\frac{\ln 20}{-\ln 2} \]

\[= \frac{-\ln 20}{-\ln 2} = \frac{\ln 20}{\ln 2} = \frac{6 \ln 20}{\ln 2} = 6 \log_2 20 \]

\[6 \frac{\ln 20}{\ln 2} \] years after starting
5. The temperature outside a house during a 24-hour period is given by

\[F(t) = 80 - 10 \cos \left(\frac{\pi t}{12} \right), \quad 0 \leq t \leq 24, \]

where \(F(t) \) is measured in degrees Fahrenheit and \(t \) is measured in hours.

(a) Sketch the graph of \(F \) on the grid below.

(b) Find the average temperature, to the nearest degree Fahrenheit, between \(t = 6 \) and \(t = 14 \).

(c) An air conditioner cooled the house whenever the outside temperature was at or above 78 degrees Fahrenheit. For what values of \(t \) was the air conditioner cooling the house?

(d) The cost of cooling the house accumulates at the rate of $0.05 per hour for each degree the outside temperature exceeds 78 degrees Fahrenheit. What was the total cost, to the nearest cent, to cool the house for this 24-hour period?

(a) [Graph of \(F(t) \) on a grid]

(b) \[\text{Avg.} = \frac{1}{14 - 6} \int_{6}^{14} [80 - 10 \cos \left(\frac{\pi t}{12} \right)] \, dt \]

\[= \frac{1}{8} (697.2957795) \]

\[= 87.162 \text{ or } 87.161 \approx 87^\circ \text{F} \]

(c) \[[80 - 10 \cos \left(\frac{\pi t}{12} \right)] - 78 \geq 0 \]

\[2 - 10 \cos \left(\frac{\pi t}{12} \right) \geq 0 \]

\[5.230 \text{ or } 5.231 \leq t \leq 18.770 \text{ or } 18.771 \]

(d) \[C = 0.05 \int_{5.231}^{18.770} \left(80 - 10 \cos \left(\frac{\pi t}{12} \right) - 78 \right) \, dt \]

\[= 0.05 (101.92741) = 5.096 \approx \$5.10 \]
Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of \(\sqrt{t + 1} \) gallons per minute, for \(0 \leq t \leq 120 \) minutes. At time \(t = 0 \), the tank contains 30 gallons of water.

(a) How many gallons of water leak out of the tank from time \(t = 0 \) to \(t = 3 \) minutes?

(b) How many gallons of water are in the tank at time \(t = 3 \) minutes?

(c) Write an expression for \(A(t) \), the total number of gallons of water in the tank at time \(t \).

(d) At what time \(t \), for \(0 \leq t \leq 120 \), is the amount of water in the tank a maximum? Justify your answer.

\[
\text{Method 1: } \int_0^3 \sqrt{t + 1} \, dt = \frac{2}{3} (t + 1)^{3/2} \bigg|_0^3 = \frac{14}{3}
\]

- or -

\[
\text{Method 2: } L(t) = \text{gallons leaked in first } t \text{ minutes}
\]

\[
\frac{dL}{dt} = \sqrt{t + 1}; \quad L(t) = \frac{2}{3} (t + 1)^{3/2} + C
\]

\[
L(0) = 0; \quad C = -\frac{2}{3}
\]

\[
L(t) = \frac{2}{3} (t + 1)^{3/2} + \frac{2}{3}; \quad L(3) = \frac{14}{3}
\]

(b) \(30 + 8 \cdot 3 - \frac{14}{3} = \frac{148}{3} \)

(c) \(A(t) = 30 + \int_0^t (8 - \sqrt{x + 1}) \, dx \)

\[
A(t) = 30 + 8t - \int_0^t \sqrt{x + 1} \, dx
\]

- or -

\[
\text{Method 2: } \frac{dA}{dt} = 8 - \sqrt{t + 1}
\]

\[
A(t) = 8t - \frac{2}{3} (t + 1)^{3/2} + C
\]

\[
30 = 8(0) - \frac{2}{3} (0 + 1)^{3/2} + C; \quad C = \frac{92}{3}
\]

\[
A(t) = 8t - \frac{2}{3} (t + 1)^{3/2} + \frac{92}{3}
\]

(d) \(A'(t) = 8 - \sqrt{t + 1} = 0 \) when \(t = 63 \)

\(A'(t) \) is positive for \(0 < t < 63 \) and negative for \(63 < t < 120 \). Therefore there is a maximum at \(t = 63 \).
The number of gallons, \(P(t) \), of a pollutant in a lake changes at the rate \(P'(t) = 1 - 3e^{-0.2\sqrt{t}} \) gallons per day, where \(t \) is measured in days. There are 50 gallons of the pollutant in the lake at time \(t = 0 \). The lake is considered to be safe when it contains 40 gallons or less of pollutant.

(a) Is the amount of pollutant increasing at time \(t = 9 \)? Why or why not?

(b) For what value of \(t \) will the number of gallons of pollutant be at its minimum? Justify your answer.

(c) Is the lake safe when the number of gallons of pollutant is at its minimum? Justify your answer.

(d) An investigator uses the tangent line approximation to \(P(t) \) at \(t = 0 \) as a model for the amount of pollutant in the lake. At what time \(t \) does this model predict that the lake becomes safe?

\[
\begin{align*}
\text{(a)} & \quad P'(9) = 1 - 3e^{-0.6} = -0.646 < 0 \\
& \text{so the amount is not increasing at this time.} \\
\text{(b)} & \quad P'(t) = 1 - 3e^{-0.2\sqrt{t}} = 0 \\
& \quad t = (5 \ln 3)^2 = 30.174 \\
& \quad P'(t) \text{ is negative for } 0 < t < (5 \ln 3)^2 \text{ and positive for } t > (5 \ln 3)^2. \text{ Therefore there is a minimum at } \\
& \quad t = (5 \ln 3)^2. \\
\text{(c)} & \quad P(30.174) = 50 + \int_0^{30.174} \left(1 - 3e^{-0.2\sqrt{t}}\right) dt \\
& \quad = 35.104 < 40, \text{ so the lake is safe.} \\
\text{(d)} & \quad P'(0) = 1 - 3 = -2. \text{ The lake will become safe when the amount decreases by 10. A linear model} \\
& \quad \text{predicts this will happen when } t = 5.
\end{align*}
\]
3. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function \(R \) of time \(t \). The table above shows the rate as measured every 3 hours for a 24-hour period.

(a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate \(\int_0^{24} R(t) \, dt \). Using correct units, explain the meaning of your answer in terms of water flow.

(b) Is there some time \(t, 0 < t < 24 \), such that \(R'(t) = 0 \)? Justify your answer.

(c) The rate of water flow \(R(t) \) can be approximated by

\[
Q(t) = \frac{1}{79} (768 + 23t - t^2).
\]

Use \(Q(t) \) to approximate the average rate of water flow during the 24-hour time period. Indicate units of measure.

\[
\begin{array}{c|c}
\text{hours} & \text{gallons per hour} \\
0 & 9.6 \\
3 & 10.4 \\
6 & 10.8 \\
9 & 11.2 \\
12 & 11.4 \\
15 & 11.3 \\
18 & 10.7 \\
21 & 10.2 \\
24 & 9.6 \\
\end{array}
\]

\[
(a) \int_0^{24} R(t) \, dt \approx 6[R(3) + R(9) + R(15) + R(21)] \\
= 6[10.4 + 11.2 + 11.3 + 10.2] \\
= 258.6 \text{ gallons}
\]

This is an approximation to the total flow in gallons of water from the pipe in the 24-hour period.

(b) Yes;

Since \(R(0) = R(24) = 9.6 \), the Mean Value Theorem guarantees that there is a \(t, 0 < t < 24 \), such that \(R'(t) = 0 \).

(c) Average rate of flow

\[
\approx \text{average value of } Q(t) \\
= \frac{1}{24} \int_0^{24} \frac{1}{79} (768 + 23t - t^2) \, dt \\
= 10.785 \text{ gal/hr or } 10.784 \text{ gal/hr}
\]

(units) Gallons in part (a) and gallons/hr in part (c), or equivalent.
3. The graph of the velocity \(v(t) \), in ft/sec, of a car traveling on a straight road, for \(0 \leq t \leq 50 \), is shown above. A table of values for \(v(t) \), at 5 second intervals of time \(t \), is shown to the right of the graph.

(a) During what intervals of time is the acceleration of the car positive? Give a reason for your answer.

(b) Find the average acceleration of the car, in ft/sec\(^2\), over the interval \(0 \leq t \leq 50 \).

(c) Find one approximation for the acceleration of the car, in ft/sec\(^2\), at \(t = 40 \). Show the computations you used to arrive at your answer.

(d) Approximate \(\int_0^{50} v(t) \, dt \) with a Riemann sum, using the midpoints of five subintervals of equal length. Using correct units, explain the meaning of this integral.

(a) Acceleration is positive on \((0, 35)\) and \((45, 50)\) because the velocity \(v(t) \) is increasing on \([0, 35]\) and \([45, 50]\).

(b) Avg. Acc. = \(\frac{v(50) - v(0)}{50 - 0} = \frac{72 - 0}{50} = \frac{72}{50} = 1.44 \text{ ft/sec}^2 \)

(c) Difference quotient; e.g.
\[
\frac{v(45) - v(40)}{5} = \frac{60 - 75}{5} = -3 \text{ ft/sec}^2 \quad \text{or}
\]
\[
\frac{v(40) - v(35)}{5} = \frac{75 - 81}{5} = -1.2 \text{ ft/sec}^2 \quad \text{or}
\]
\[
\frac{v(45) - v(35)}{10} = \frac{60 - 81}{10} = -2.1 \text{ ft/sec}^2
\]

or:
Slope of tangent line, e.g.
through \((35, 90)\) and \((40, 75)\):
\[
\frac{90 - 75}{35 - 40} = -3 \text{ ft/sec}^2
\]

(d) \(\int_0^{50} v(t) \, dt \)
\[
\approx 10[v(5) + v(15) + v(25) + v(35) + v(45)]
\]
\[
= 10[12 + 30 + 70 + 81 + 60]
\]
\[
= 2530 \text{ feet}
\]
This integral is the total distance traveled in feet over the time 0 to 50 seconds.
Question 2

The temperature, in degrees Celsius (°C), of the water in a pond is a differentiable function \(W \) of time \(t \). The table above shows the water temperature as recorded every 3 days over a 15-day period.

(a) Use data from the table to find an approximation for \(W'(12) \). Show the computations that lead to your answer. Indicate units of measure.

(b) Approximate the average temperature, in degrees Celsius, of the water over the time interval \(0 \leq t \leq 15 \) days by using a trapezoidal approximation with subintervals of length \(\Delta t = 3 \) days.

(c) A student proposes the function \(P \), given by \(P(t) = 20 + 10te^{-(t/3)} \), as a model for the temperature of the water in the pond at time \(t \), where \(t \) is measured in days and \(P(t) \) is measured in degrees Celsius. Find \(P'(12) \). Using appropriate units, explain the meaning of your answer in terms of water temperature.

(d) Use the function \(P \) defined in part (c) to find the average value, in degrees Celsius, of \(P(t) \) over the time interval \(0 \leq t \leq 15 \) days.

(a) Difference quotient; e.g.

\[
W'(12) \approx \frac{W(15) - W(12)}{15 - 12} = -\frac{1}{3} \text{ °C/day or}
\]

\[
W'(12) \approx \frac{W(12) - W(9)}{12 - 9} = -\frac{2}{3} \text{ °C/day or}
\]

\[
W'(12) \approx \frac{W(15) - W(9)}{15 - 9} = -\frac{1}{2} \text{ °C/day}
\]

(b) \[
\frac{3}{2}(20 + 2(31) + 2(28) + 2(24) + 2(22) + 21) = 376.5
\]

Average temperature \(\approx \frac{1}{15}(376.5) = 25.1 \text{ °C} \)

(c) \[
P'(12) = 10e^{-t/3} - \frac{10}{3}te^{-t/3} \bigg|_{t=12}
\]

\[
= -30e^{-4} = -0.549 \text{ °C/day}
\]

This means that the temperature is decreasing at the rate of \(0.549 \text{ °C/day} \) when \(t = 12 \) days.

(d) \[
\frac{1}{15} \int_{0}^{15} (20 + 10te^{-t/3}) \, dt = 25.757 \text{ °C}
\]

2 :
1 : difference quotient
1 : answer (with units)

2 :
1 : trapezoidal method
1 : answer

2 :
1 : \(P'(12) \) (with or without units)
1 : interpretation

3 :
1 : integrand
1 : limits and
average value constant
1 : answer
A blood vessel is 360 millimeters (mm) long with circular cross sections of varying diameter. The table above gives the measurements of the diameter of the blood vessel at selected points along the length of the blood vessel, where x represents the distance from one end of the blood vessel and $B(x)$ is a twice-differentiable function that represents the diameter at that point.

(a) Write an integral expression in terms of $B(x)$ that represents the average radius, in mm, of the blood vessel between $x = 0$ and $x = 360$.

(b) Approximate the value of your answer from part (a) using the data from the table and a midpoint Riemann sum with three subintervals of equal length. Show the computations that lead to your answer.

(c) Using correct units, explain the meaning of $\frac{\pi}{3} \int_{125}^{275} \left(\frac{B(x)}{2} \right)^2 \, dx$ in terms of the blood vessel.

(d) Explain why there must be at least one value x, for $0 < x < 360$, such that $B''(x) = 0$.

<table>
<thead>
<tr>
<th>Distance x (mm)</th>
<th>0</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter $B(x)$ (mm)</td>
<td>24</td>
<td>30</td>
<td>28</td>
<td>30</td>
<td>26</td>
<td>24</td>
<td>26</td>
</tr>
</tbody>
</table>

(a) $\frac{1}{360} \int_{0}^{360} \frac{B(x)}{2} \, dx$

(b) $\frac{1}{360} \left[120 \left(\frac{B(60)}{2} + \frac{B(180)}{2} + \frac{B(300)}{2} \right) \right] = \frac{1}{360} [60(30 + 30 + 24)] = 14$

(c) $\frac{B(x)}{2}$ is the radius, so $\pi \left(\frac{B(x)}{2} \right)^2$ is the area of the cross section at x. The expression is the volume in mm3 of the blood vessel between 125 mm and 275 mm from the end of the vessel.

(d) By the MVT, $B'(c_1) = 0$ for some c_1 in (60, 180) and $B'(c_2) = 0$ for some c_2 in (240, 360). The MVT applied to $B'(x)$ shows that $B''(x) = 0$ for some x in the interval (c_1, c_2).

Note: max 1/3 if only explains why $B'(x) = 0$ at some x in $(0, 360)$.

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twice-differentiable and strictly increasing function R of time t. The graph of R and a table of selected values of $R(t)$, for the time interval $0 \leq t \leq 90$ minutes, are shown above.

(a) Use data from the table to find an approximation for $R'(45)$. Show the computations that lead to your answer. Indicate units of measure.

(b) The rate of fuel consumption is increasing fastest at time $t = 45$ minutes. What is the value of $R''(45)$? Explain your reasoning.

(c) Approximate the value of $\int_0^{90} R(t) \, dt$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_0^{90} R(t) \, dt$? Explain your reasoning.

(d) For $0 < b \leq 90$ minutes, explain the meaning of $\int_0^b R(t) \, dt$ in terms of fuel consumption for the plane. Explain the meaning of $\frac{1}{b} \int_0^b R(t) \, dt$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.

(a) $R'(45) \approx \frac{R(50) - R(40)}{50 - 40} = \frac{55 - 40}{10} = 1.5 \text{ gal/min}^2$

(b) $R''(45) = 0$ since $R'(t)$ has a maximum at $t = 45$.

(c) $\int_0^{90} R(t) \, dt \approx (30)(20) + (10)(30) + (10)(40)$

+ $(20)(55) + (20)(65) = 3700$

Yes, this approximation is less because the graph of R is increasing on the interval.

(d) $\int_0^b R(t) \, dt$ is the total amount of fuel in gallons consumed for the first b minutes.

$\frac{1}{b} \int_0^b R(t) \, dt$ is the average value of the rate of fuel consumption in gallons/min during the first b minutes.

1 : a difference quotient using numbers from table and interval that contains 45
2 : $1 : 1.5 \text{ gal/min}^2$
1 : reason
2 : $1 : R''(45) = 0$
1 : value of left Riemann sum
2 : 1 : “less” with reason
3 : $1 : \text{meaning of } \int_0^b R(t) \, dt$
$< -1 >$ if no reference to time b
1 : units in both answers
A test plane flies in a straight line with positive velocity \(v(t) \), in miles per minute at time \(t \) minutes, where \(v \) is a differentiable function of \(t \). Selected values of \(v(t) \) for \(0 \leq t \leq 40 \) are shown in the table above.

(a) Use a midpoint Riemann sum with four subintervals of equal length and values from the table to approximate \(\int_0^{40} v(t) \, dt \). Show the computations that lead to your answer. Using correct units, explain the meaning of \(\int_0^{40} v(t) \, dt \) in terms of the plane’s flight.

(b) Based on the values in the table, what is the smallest number of instances at which the acceleration of the plane could equal zero on the open interval \(0 < t < 40 \)? Justify your answer.

(c) The function \(f \), defined by \(f(t) = 6 + \cos \left(\frac{t}{10} \right) + 3\sin \left(\frac{7t}{40} \right) \), is used to model the velocity of the plane, in miles per minute, for \(0 \leq t \leq 40 \). According to this model, what is the acceleration of the plane at \(t = 23 \)? Indicates units of measure.

(d) According to the model \(f \), given in part (c), what is the average velocity of the plane, in miles per minute, over the time interval \(0 \leq t \leq 40 \)?

(a) Midpoint Riemann sum is

\[
10 \cdot [v(5) + v(15) + v(25) + v(35)]
= 10 \cdot [9.2 + 7.0 + 2.4 + 4.3] = 229
\]

The integral gives the total distance in miles that the plane flies during the 40 minutes.

(b) By the Mean Value Theorem, \(v'(t) = 0 \) somewhere in the interval \((0, 15)\) and somewhere in the interval \((25, 30)\). Therefore the acceleration will equal 0 for at least two values of \(t \).

(c) \(f'(23) = -0.407 \) or \(-0.408 \) miles per minute\(^2\)

(d) Average velocity \(= \frac{1}{40} \int_0^{40} f(t) \, dt \)

\[
= 5.916 \text{ miles per minute}
\]
A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature $T(x)$, in degrees Celsius (°C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.

(a) Estimate $T'(7)$. Show the work that leads to your answer. Indicate units of measure.

(b) Write an integral expression in terms of $T(x)$ for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.

(c) Find $\int_0^8 T'(x) \, dx$, and indicate units of measure. Explain the meaning of $\int_0^8 T'(x) \, dx$ in terms of the temperature of the wire.

(d) Are the data in the table consistent with the assertion that $T''(x) > 0$ for every x in the interval $0 < x < 8$? Explain your answer.

Table

<table>
<thead>
<tr>
<th>Distance x (cm)</th>
<th>0</th>
<th>1</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature $T(x)$ (°C)</td>
<td>100</td>
<td>93</td>
<td>70</td>
<td>62</td>
<td>55</td>
</tr>
</tbody>
</table>

Answers

(a) \(\frac{T(8) - T(6)}{8 - 6} = \frac{55 - 62}{2} = \frac{-7}{2} \text{°C/cm} \)

(b) \(\frac{1}{8} \int_0^8 T(x) \, dx \)

Trapezoidal approximation for $\int_0^8 T(x) \, dx$:

\[
A = \frac{100 + 93}{2} \cdot 1 + \frac{93 + 70}{2} \cdot 4 + \frac{70 + 62}{2} \cdot 1 + \frac{62 + 55}{2} \cdot 2
\]

Average temperature $= \frac{1}{8} A = 75.6875 \text{°C}$

(c) \(\int_0^8 T'(x) \, dx = T(8) - T(0) = 55 - 100 = -45 \text{°C} \)

The temperature drops 45°C from the heated end of the wire to the other end of the wire.

(d) Average rate of change of temperature on $[1, 5]$ is $\frac{70 - 93}{5 - 1} = -5.75$.

Average rate of change of temperature on $[5, 6]$ is $\frac{62 - 70}{6 - 5} = -8$.

No. By the MVT, $T'(c_1) = -5.75$ for some c_1 in the interval $(1, 5)$ and $T'(c_2) = -8$ for some c_2 in the interval $(5, 6)$. It follows that T' must decrease somewhere in the interval (c_1, c_2). Therefore T'' is not positive for every x in $[0, 8]$.

Units of °C/cm in (a), and °C in (b) and (c)
A car travels on a straight track. During the time interval 0 ≤ t ≤ 60 seconds, the car’s velocity \(v \), measured in feet per second, and acceleration \(a \), measured in feet per second per second, are continuous functions. The table above shows selected values of these functions.

(a) Using appropriate units, explain the meaning of \(\int_{30}^{60} |v(t)| \, dt \) in terms of the car’s motion. Approximate \(\int_{30}^{60} |v(t)| \, dt \) using a trapezoidal approximation with the three subintervals determined by the table.

(b) Using appropriate units, explain the meaning of \(\int_{0}^{30} a(t) \, dt \) in terms of the car’s motion. Find the exact value of \(\int_{0}^{30} a(t) \, dt \).

(c) For 0 < t < 60, must there be a time \(t \) when \(v(t) = -5 \)? Justify your answer.

(d) For 0 < t < 60, must there be a time \(t \) when \(a(t) = 0 \)? Justify your answer.

<table>
<thead>
<tr>
<th>(t) (sec)</th>
<th>0</th>
<th>15</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(t)) (ft/sec)</td>
<td>-20</td>
<td>-30</td>
<td>-20</td>
<td>-14</td>
<td>-10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>(a(t)) (ft/sec²)</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Units of ft in (a) and ft/sec in (b)
Rocket A has positive velocity $v(t)$ after being launched upward from an initial height of 0 feet at time $t = 0$ seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table above.

(a) Find the average acceleration of rocket A over the time interval $0 \leq t \leq 80$ seconds. Indicate units of measure.

(b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) \, dt$ in terms of the rocket’s flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) \, dt$.

(c) Rocket B is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{t+1}}$ feet per second per second. At time $t = 0$ seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time $t = 80$ seconds? Explain your answer.
The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For $0 < t < 12$, the graph of r is concave down. The table above gives selected values of the rate of change, $r'(t)$, of the radius of the balloon over the time interval $0 \leq t \leq 12$. The radius of the balloon is 30 feet when $t = 5$. (Note: The volume of a sphere of radius r is given by $V = \frac{4}{3} \pi r^3$.)

(a) Estimate the radius of the balloon when $t = 5.4$ using the tangent line approximation at $t = 5$. Is your estimate greater than or less than the true value? Give a reason for your answer.

(b) Find the rate of change of the volume of the balloon with respect to time when $t = 5$. Indicate units of measure.

(c) Use a right Riemann sum with the five subintervals indicated by the data in the table to approximate $\int_0^{12} r'(t) \, dt$. Using correct units, explain the meaning of $\int_0^{12} r'(t) \, dt$ in terms of the radius of the balloon.

(d) Is your approximation in part (c) greater than or less than $\int_0^{12} r'(t) \, dt$? Give a reason for your answer.

Table

<table>
<thead>
<tr>
<th>t (minutes)</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r'(t)$ (feet per minute)</td>
<td>5.7</td>
<td>4.0</td>
<td>2.0</td>
<td>1.2</td>
<td>0.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(a) $r(5.4) = r(5) + r'(5)\Delta t = 30 + 2(0.4) = 30.8$ ft

Since the graph of r is concave down on the interval $5 < t < 5.4$, this estimate is greater than $r(5.4)$.

(b) $\frac{dV}{dt} = 3\left(\frac{4}{3}\pi r^2\right) \frac{dr}{dt}$

$\left.\frac{dV}{dt}\right|_{t=5} = 4\pi (30)^2 2 = 7200\pi$ ft3/min

(c) $\int_0^{12} r'(t) \, dt = 2(4.0) + 3(2.0) + 2(1.2) + 4(0.6) + 1(0.5)$

$= 19.3$ ft

$\int_0^{12} r'(t) \, dt$ is the change in the radius, in feet, from $t = 0$ to $t = 12$ minutes.

(d) Since r is concave down, r' is decreasing on $0 < t < 12$. Therefore, this approximation, 19.3 ft, is less than $\int_0^{12} r'(t) \, dt$.

Units of ft3/min in part (b) and ft in part (c)
A scientist measures the depth of the Doe River at Picnic Point. The river is 24 feet wide at this location. The measurements are taken in a straight line perpendicular to the edge of the river. The data are shown in the table above. The velocity of the water at Picnic Point, in feet per minute, is modeled by $v(t) = 16 + 2\sin(\sqrt{t + 10})$ for $0 \leq t \leq 120$ minutes.

(a) Use a trapezoidal sum with the four subintervals indicated by the data in the table to approximate the area of the cross section of the river at Picnic Point, in square feet. Show the computations that lead to your answer.

(b) The volumetric flow at a location along the river is the product of the cross-sectional area and the velocity of the water at that location. Use your approximation from part (a) to estimate the average value of the volumetric flow at Picnic Point, in cubic feet per minute, from $t = 0$ to $t = 120$ minutes.

(c) The scientist proposes the function f, given by $f(x) = 8\sin\left(\frac{\pi x}{24}\right)$, as a model for the depth of the water, in feet, at Picnic Point x feet from the river’s edge. Find the area of the cross section of the river at Picnic Point based on this model.

(d) Recall that the volumetric flow is the product of the cross-sectional area and the velocity of the water at a location. To prevent flooding, water must be diverted if the average value of the volumetric flow at Picnic Point exceeds 2100 cubic feet per minute for a 20-minute period. Using your answer from part (c), find the average value of the volumetric flow during the time interval $40 \leq t \leq 60$ minutes. Does this value indicate that the water must be diverted?

\[\frac{0 + 7}{2} \cdot 8 + \frac{7 + 8}{2} \cdot 6 + \frac{8 + 2}{2} \cdot 8 + \frac{2 + 0}{2} \cdot 2 = 115 \text{ ft}^2 \]

\[\frac{1}{120} \int_0^{120} 115v(t) \, dt = 1807.169 \text{ or } 1807.170 \text{ ft}^3/\text{min} \]

\[\int_0^{24} 8\sin\left(\frac{\pi x}{24}\right) \, dx = 122.230 \text{ or } 122.231 \text{ ft}^2 \]

Let C be the cross-sectional area approximation from part (c). The average volumetric flow is

\[\frac{1}{20} \int_{40}^{60} C \cdot v(t) \, dt = 2181.912 \text{ or } 2181.913 \text{ ft}^3/\text{min}. \]

Yes, water must be diverted since the average volumetric flow for this 20-minute period exceeds 2100 ft³/minute.
Concert tickets went on sale at noon \((t = 0)\) and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time \(t\) is modeled by a twice-differentiable function \(L\) for \(0 \leq t \leq 9\). Values of \(L(t)\) at various times \(t\) are shown in the table above.

(a) Use the data in the table to estimate the rate at which the number of people waiting in line was changing at 5:30 P.M. \((t = 5.5)\). Show the computations that lead to your answer. Indicate units of measure.

(b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line during the first 4 hours that tickets were on sale.

(c) For \(0 \leq t \leq 9\), what is the fewest number of times at which \(L'(t)\) must equal 0? Give a reason for your answer.

(d) The rate at which tickets were sold for \(0 \leq t \leq 9\) is modeled by \(r(t) = 550e^{-t/2}\) tickets per hour. Based on the model, how many tickets were sold by 3 P.M. \((t = 3)\) to the nearest whole number?

\[
\begin{array}{c|ccccccccc}
\text{t (hours)} & 0 & 1 & 3 & 4 & 7 & 8 & 9 \\
\hline
\text{L(t) (people)} & 120 & 156 & 176 & 126 & 150 & 80 & 0 \\
\end{array}
\]
The figure above shows the graph of \(f' \), the derivative of the function \(f \), for \(-7 \leq x \leq 7\). The graph of \(f' \) has horizontal tangent lines at \(x = -3, x = 2, \) and \(x = 5 \), and a vertical tangent line at \(x = 3 \).

(a) Find all values of \(x \), for \(-7 < x < 7\), at which \(f \) attains a relative minimum. Justify your answer.

(b) Find all values of \(x \), for \(-7 < x < 7\), at which \(f \) attains a relative maximum. Justify your answer.

(c) Find all values of \(x \), for \(-7 < x < 7\), at which \(f''(x) < 0 \).

(d) At what value of \(x \), for \(-7 \leq x \leq 7\), does \(f \) attain its absolute maximum? Justify your answer.

(a) \(x = -1 \)

\(f'(x) \) changes from negative to positive at \(x = -1 \)

(b) \(x = -5 \)

\(f'(x) \) changes from positive to negative at \(x = -5 \)

(c) \(f''(x) \) exists and \(f' \) is decreasing on the intervals \((-7,-3), (2,3), \) and \((3,5)\)

(d) \(x = 7 \)

The absolute maximum must occur at \(x = -5 \) or at an endpoint.

\(f(-5) > f(-7) \) because \(f \) is increasing on \((-7,-5)\)

The graph of \(f' \) shows that the magnitude of the negative change in \(f \) from \(x = -5 \) to \(x = -1 \) is smaller than the positive change in \(f \) from \(x = -1 \) to \(x = 7 \). Therefore the net change in \(f \) is positive from \(x = -5 \) to \(x = 7 \), and \(f(7) > f(-5) \). So \(f(7) \) is the absolute maximum.
Question 4

The figure above shows the graph of f', the derivative of the function f, on the closed interval $-1 \leq x \leq 5$. The graph of f' has horizontal tangent lines at $x = 1$ and $x = 3$. The function f is twice differentiable with $f(2) = 6$.

(a) Find the x-coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.

(b) At what value of x does f attain its absolute minimum value on the closed interval $-1 \leq x \leq 5$? At what value of x does f attain its absolute maximum value on the closed interval $-1 \leq x \leq 5$? Show the analysis that leads to your answers.

(c) Let g be the function defined by $g(x) = xf(x)$. Find an equation for the line tangent to the graph of g at $x = 2$.

\[\begin{align*}
\text{(a) } & x = 1 \text{ and } x = 3 \text{ because the graph of } f' \text{ changes from increasing to decreasing at } x = 1, \text{ and changes from decreasing to increasing at } x = 3. \\
\text{(b) } & \text{The function } f \text{ decreases from } x = -1 \text{ to } x = 4, \text{ then increases from } x = 4 \text{ to } x = 5. \\
& \text{Therefore, the absolute minimum value for } f \text{ is at } x = 4. \\
& \text{The absolute maximum value must occur at } x = -1 \text{ or at } x = 5. \\
& f(5) - f(-1) = \int_{-1}^{5} f''(t) \, dt < 0 \\
& \text{Since } f'(5) < f'(-1), \text{ the absolute maximum value occurs at } x = -1. \\
\text{(c) } & g'(x) = f(x) + xf'(x) \\
& g'(2) = f(2) + 2f'(2) = 6 + 2(-1) = 4 \\
& g(2) = 2f(2) = 12 \\
& \text{Tangent line is } y = 4(x - 2) + 12.
\end{align*} \]
Question 2

Let \(f \) be the function defined for \(x \geq 0 \) with \(f(0) = 5 \) and \(f' \), the first derivative of \(f \), given by \(f'(x) = e^{-(x/4)} \sin(x^2) \). The graph of \(y = f'(x) \) is shown above.

(a) Use the graph of \(f' \) to determine whether the graph of \(f \) is concave up, concave down, or neither on the interval \(1.7 < x < 1.9 \). Explain your reasoning.

(b) On the interval \(0 \leq x \leq 3 \), find the value of \(x \) at which \(f \) has an absolute maximum. Justify your answer.

(c) Write an equation for the line tangent to the graph of \(f \) at \(x = 2 \).

(a) On the interval \(1.7 < x < 1.9 \), \(f' \) is decreasing and thus \(f \) is concave down on this interval.

(b) \(f'(x) = 0 \) when \(x = 0, \sqrt{\pi}, \sqrt{2\pi}, \sqrt{3\pi}, \ldots \)

On \([0, 3]\) \(f' \) changes from positive to negative only at \(\sqrt{\pi} \). The absolute maximum must occur at \(x = \sqrt{\pi} \) or at an endpoint.

\[
f(0) = 5
\]

\[
f(\sqrt{\pi}) = f(0) + \int_0^{\sqrt{\pi}} f'(x) \, dx = 5.67911
\]

\[
f(3) = f(0) + \int_0^3 f'(x) \, dx = 5.57893
\]

This shows that \(f \) has an absolute maximum at \(x = \sqrt{\pi} \).

(c) \(f(2) = f(0) + \int_0^2 f'(x) \, dx = 5.62342 \)

\[
f'(2) = e^{-0.5} \sin(4) = -0.45902
\]

\[
y = 5.623 = (-0.459)(x - 2)
\]
A particle moves along the x-axis so that its velocity at time \(t \), for \(0 \leq t \leq 6 \), is given by a differentiable function \(v \) whose graph is shown above. The velocity is 0 at \(t = 0 \), \(t = 3 \), and \(t = 5 \), and the graph has horizontal tangents at \(t = 1 \) and \(t = 4 \). The areas of the regions bounded by the \(t \)-axis and the graph of \(v \) on the intervals \([0, 3]\), \([3, 5]\), and \([5, 6]\) are 8, 3, and 2, respectively. At time \(t = 0 \), the particle is at \(x = -2 \).

(a) For \(0 \leq t \leq 6 \), find both the time and the position of the particle when the particle is farthest to the left. Justify your answer.

(b) For how many values of \(t \), where \(0 \leq t \leq 6 \), is the particle at \(x = -8 \)? Explain your reasoning.

(c) On the interval \(2 < t < 3 \), is the speed of the particle increasing or decreasing? Give a reason for your answer.

(d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer.

(a) Since \(v(t) < 0 \) for \(0 < t < 3 \) and \(5 < t < 6 \), and \(v(t) > 0 \) for \(3 < t < 5 \), we consider \(t = 3 \) and \(t = 6 \).

\[
x(3) = -2 + \int_0^3 v(t) \, dt = -2 - 8 = -10
\]

\[
x(6) = -2 + \int_0^6 v(t) \, dt = -2 - 8 + 3 - 2 = -9
\]

Therefore, the particle is farthest left at time \(t = 3 \) when its position is \(x(3) = -10 \).

(b) The particle moves continuously and monotonically from \(x(0) = -2 \) to \(x(3) = -10 \). Similarly, the particle moves continuously and monotonically from \(x(3) = -10 \) to \(x(5) = -7 \) and also from \(x(5) = -7 \) to \(x(6) = -9 \).

By the Intermediate Value Theorem, there are three values of \(t \) for which the particle is at \(x(t) = -8 \).

(c) The speed is decreasing on the interval \(2 < t < 3 \) since on this interval \(v < 0 \) and \(v \) is increasing.

(d) The acceleration is negative on the intervals \(0 < t < 1 \) and \(4 < t < 6 \) since velocity is decreasing on these intervals.
The figure above shows the graph of \(f' \), the derivative of a function \(f \). The domain of \(f \) is the set of all real numbers \(x \) such that \(-10 \leq x \leq 10\).

(a) For what values of \(x \) does the graph of \(f' \) have a horizontal tangent?

(b) For what values of \(x \) in the interval \((-10, 10)\) does \(f' \) have a relative maximum? Justify your answer.

(c) For value of \(x \) is the graph of \(f \) concave downward?
1989 AB5
Solution

(a) horizontal tangent $\iff f'(x) = 0$
\[x = -7, -1, 4, 8 \]

(b) Relative maxima at $x = -1, 8$ because f' changes from positive to negative at these points

(c) f concave downward $\iff f'$ decreasing
\[(-3, 2), (6, 10) \]
Question 5

Consider the differential equation \(\frac{dy}{dx} = x^4(y - 2) \).

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
 (Note: Use the axes provided in the test booklet.)

(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the \(xy \)-plane. Describe all points in the \(xy \)-plane for which the slopes are negative.

(c) Find the particular solution \(y = f(x) \) to the given differential equation with the initial condition \(f(0) = 0 \).

<table>
<thead>
<tr>
<th></th>
<th>1: zero slope at each point ((x, y)) where (x = 0) or (y = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:</td>
<td>positive slope at each point ((x, y)) where (x \neq 0) and (y > 2)</td>
</tr>
<tr>
<td></td>
<td>negative slope at each point ((x, y)) where (x \neq 0) and (y < 2)</td>
</tr>
</tbody>
</table>

\[\frac{1}{y - 2} dy = x^4 dx \]

\[\ln |y - 2| = \frac{1}{5} x^5 + C \]

\[|y - 2| = e^C e^{\frac{1}{5} x^5} \]

\[y - 2 = K e^{\frac{1}{5} x^5}, \quad K = \pm e^C \]

\[y - 2 = K e^0 = K \]

\[y = 2 - 2e^{\frac{1}{5} x^5} \]

Note: max 3/6 [1-2-0-0-0] if no constant of integration
Note: 0/6 if no separation of variables

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).
Question 6

Consider the differential equation \(\frac{dy}{dx} = x^2 (y - 1) \).

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(Note: Use the axes provided in the pink test booklet.)

(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the \(xy \)-plane. Describe all points in the \(xy \)-plane for which the slopes are positive.

(c) Find the particular solution \(y = f(x) \) to the given differential equation with the initial condition \(f(0) = 3 \).

(a) Slopes are positive at points \((x, y) \)
where \(x \neq 0 \) and \(y > 1 \).

(c) \[
\frac{1}{y-1} \, dy = x^2 \, dx \\
\ln|y-1| = \frac{1}{3} x^3 + C \\
|y-1| = C e^{\frac{1}{3} x^3} \\
y - 1 = Ke^{\frac{1}{3} x^3}, K = \pm e^C \\
2 = Ke^0 = K \\
y = 1 + 2e^{\frac{1}{3} x^3}
\]
Consider the differential equation \(\frac{dy}{dx} = -\frac{xy^2}{2} \). Let \(y = f(x) \) be the particular solution to this differential equation with the initial condition \(f(-1) = 2 \).

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(Note: Use the axes provided in the test booklet.)

(b) Write an equation for the line tangent to the graph of \(f \) at \(x = -1 \).

(c) Find the solution \(y = f(x) \) to the given differential equation with the initial condition \(f(-1) = 2 \).
Consider the differential equation \(\frac{dy}{dx} = -\frac{2x}{y} \).

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(Note: Use the axes provided in the pink test booklet.)

(b) Let \(y = f(x) \) be the particular solution to the differential equation with the initial condition \(f(1) = -1 \). Write an equation for the line tangent to the graph of \(f \) at \((1, -1)\) and use it to approximate \(f(1.1) \).

(c) Find the particular solution \(y = f(x) \) to the given differential equation with the initial condition \(f(1) = -1 \).

(a) 2: \{ 1: zero slopes 1: nonzero slopes \}

(b) The line tangent to \(f \) at \((1, -1)\) is \(y + 1 = 2(x - 1) \). Thus, \(f(1.1) \) is approximately \(-0.8\).

(c) \[
\frac{dy}{dx} = -\frac{2x}{y} \\
y \ dy = -2x \ dx \\
\frac{y^2}{2} = -x^2 + C \\
\frac{1}{2} = -1 + C; \ C = \frac{3}{2} \\
y^2 = -2x^2 + 3 \\
\text{Since the particular solution goes through } (1, -1), \ y \text{ must be negative.} \\
\text{Thus the particular solution is } y = -\sqrt{3 - 2x^2}.
\]
Consider the differential equation \(\frac{dy}{dx} = (y - 1)^2 \cos(\pi x) \).

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.)

(b) There is a horizontal line with equation \(y = c \) that satisfies this differential equation. Find the value of \(c \).

(c) Find the particular solution \(y = f(x) \) to the differential equation with the initial condition \(f(1) = 0 \).

\[
\begin{align*}
\text{(a)} & \\
\text{(b)} & \\
\text{(c)}
\end{align*}
\]

\[
\[
\begin{align*}
\frac{1}{(y - 1)^2} \, dy = \cos(\pi x) \, dx \\
-(y - 1)^{-1} &= \frac{1}{\pi} \sin(\pi x) + C \\
\frac{1}{1 - y} &= \frac{1}{\pi} \sin(\pi x) + C \\
1 &= \frac{1}{\pi} \sin(\pi) + C = C \\
\frac{1}{1 - y} &= \frac{1}{\pi} \sin(\pi x) + 1 \\
\frac{\pi}{1 - y} &= \sin(\pi x) + \pi \\
y &= 1 - \frac{\pi}{\sin(\pi x) + \pi} \quad \text{for} \quad -\infty < x < \infty
\end{align*}
\]

1 : \(c = 1 \)

2 : \{ 1 : zero slopes, 1 : all other slopes \}

1 : separates variables
2 : antiderivatives
6 : \{ 1 : constant of integration, 1 : uses initial condition, 1 : answer \}

Note: max 3/6 [1-2-0-0-0] if no constant of integration
Note: 0/6 if no separation of variables
Question 5

Consider the differential equation $\frac{dy}{dx} = \frac{1 + y}{x}$, where $x \neq 0$.

(a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated. (Note: Use the axes provided in the pink exam booklet.)

(b) Find the particular solution $y = f(x)$ to the differential equation with the initial condition $f(-1) = 1$ and state its domain.

| (a) | 2 : sign of slope at each point and relative steepness of slope lines in rows and columns |
| (b) | 1 : separates variables
2 : antiderivatives
6 : 1 : constant of integration
1 : uses initial condition
1 : solves for y
7 : Note: max 3/6 [1-2-0-0-0] if no constant of integration
Note: 0/6 if no separation of variables
1 : domain |
Consider the differential equation \(\frac{dy}{dx} = \frac{1}{2}x + y - 1 \).

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)

(b) Find \(\frac{d^2y}{dx^2} \) in terms of \(x \) and \(y \). Describe the region in the \(xy \)-plane in which all solution curves to the differential equation are concave up.

(c) Let \(y = f(x) \) be a particular solution to the differential equation with the initial condition \(f(0) = 1 \). Does \(f \) have a relative minimum, a relative maximum, or neither at \(x = 0 \)? Justify your answer.

(d) Find the values of the constants \(m \) and \(b \), for which \(y = mx + b \) is a solution to the differential equation.

\[\frac{d^2y}{dx^2} = \frac{1}{2} + \frac{dy}{dx} = \frac{1}{2}x + y - \frac{1}{2} \]

Solution curves will be concave up on the half-plane above the line \(y = -\frac{1}{2}x + \frac{1}{2} \).

\(\left. \frac{dy}{dx} \right|_{(0,1)} = 0 + 1 - 1 = 0 \) and \(\left. \frac{d^2y}{dx^2} \right|_{(0,1)} = 0 + 1 - \frac{1}{2} > 0 \)

Thus, \(f \) has a relative minimum at \((0,1)\).

Substituting \(y = mx + b \) into the differential equation:

\[m = \frac{1}{2}x + (mx + b) - 1 = \left(m + \frac{1}{2} \right)x + (b - 1) \]

Then \(0 = m + \frac{1}{2} \) and \(m = b - 1 \): \(m = -\frac{1}{2} \) and \(b = \frac{1}{2} \).
Consider the differential equation \(\frac{dy}{dx} = \frac{y - 1}{x^2} \), where \(x \neq 0 \).

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
(Note: Use the axes provided in the exam booklet.)

(b) Find the particular solution \(y = f(x) \) to the differential equation with the initial condition \(f(2) = 0 \).

(c) For the particular solution \(y = f(x) \) described in part (b), find \(\lim_{x \to \infty} f(x) \).

\[
\begin{align*}
\text{(a)} & \\
\frac{1}{y - 1} \, dy &= \frac{1}{x^2} \, dx \\
\ln|y - 1| &= -\frac{1}{x} + C \\
|y - 1| &= e^{-\frac{1}{x} + C} \\
|y - 1| &= e^C e^{-\frac{1}{x}} \\
y - 1 &= ke^{-\frac{1}{x}}, \text{ where } k = \pm e^C \\
-1 &= ke^{-\frac{1}{2}} \\
k &= -e^{\frac{1}{2}} \\
f(x) &= 1 - e^{\left(\frac{1}{x} - \frac{1}{x}\right)}, \, x > 0
\end{align*}
\]

\[
\begin{align*}
\text{(b)} & \\
\lim_{x \to \infty} 1 - e^{\left(\frac{1}{2} - \frac{1}{x}\right)} &= 1 - \sqrt{e} \\
\end{align*}
\]
4. Let \(f \) be a function with \(f(1) = 4 \) such that for all points \((x, y)\) on the graph of \(f \) the slope is given by \(\frac{3x^2 + 1}{2y} \).

(a) Find the slope of the graph of \(f \) at the point where \(x = 1 \).

(b) Write an equation for the line tangent to the graph of \(f \) at \(x = 1 \) and use it to approximate \(f(1.2) \).

(c) Find \(f(x) \) by solving the separable differential equation \(\frac{dy}{dx} = \frac{3x^2 + 1}{2y} \) with the initial condition \(f(1) = 4 \).

(d) Use your solution from part (c) to find \(f(1.2) \).

(a) \(\frac{dy}{dx} = \frac{3x^2 + 1}{2y} \)

\[\left. \frac{dy}{dx} \right|_{x=1, y=4} = \frac{3 + 1}{2 \cdot 4} = \frac{4}{8} = \frac{1}{2} \]

(b) \(y - 4 = \frac{1}{2}(x - 1) \)

\[f(1.2) - 4 \approx \frac{1}{2}(1.2 - 1) \]

\[f(1.2) \approx 0.1 + 4 = 4.1 \]

(c) \(2y \, dy = (3x^2 + 1) \, dx \)

\[\int 2y \, dy = \int (3x^2 + 1) \, dx \]

\[y^2 = x^3 + x + C \]

\[4^2 = 1 + 1 + C \]

\[14 = C \]

\[y^2 = x^3 + x + 14 \]

\(y = \sqrt{x^3 + x + 14} \) is branch with point \((1, 4)\)

\[f(x) = \sqrt{x^3 + x + 14} \]

(d) \(f(1.2) = \sqrt{1.2^3 + 1.2 + 14} \approx 4.114 \)
Consider the differential equation \(\frac{dy}{dx} = \frac{3x^2}{e^{2y}} \).

(a) Find a solution \(y = f(x) \) to the differential equation satisfying \(f(0) = \frac{1}{2} \).

(b) Find the domain and range of the function \(f \) found in part (a).

\[
\begin{align*}
(a) & \quad e^{2y} \, dy = 3x^2 \, dx \\
& \quad \frac{1}{2} e^{2y} = x^3 + C_1 \\
& \quad e^{2y} = 2x^3 + C \\
& \quad y = \frac{1}{2} \ln(2x^3 + C) \\
& \quad \frac{1}{2} = \frac{1}{2} \ln(0 + C); \quad C = e \\
& \quad y = \frac{1}{2} \ln(2x^3 + e)
\end{align*}
\]

6

1: separates variables
1: antiderivative of \(dy \) term
1: antiderivative of \(dx \) term
1: constant of integration
1: uses initial condition \(f(0) = \frac{1}{2} \)
1: solves for \(y \)

Note: 0/1 if \(y \) is not a logarithmic function of \(x \)

Note: max 3/6 [1-1-1-0-0-0] if no constant of integration
Note: 0/6 if no separation of variables

(b) Domain: \(2x^3 + e > 0 \)

\[
x^3 > -\frac{1}{2} e \\
x > \left(-\frac{1}{2} e \right)^{1/3} = -\left(\frac{1}{2} e \right)^{1/3}
\]

Range: \(-\infty < y < \infty \)

3

1: \(2x^3 + e > 0 \)
1: domain

Note: 0/1 if 0 is not in the domain
1: range

Note: 0/3 if \(y \) is not a logarithmic function of \(x \)
Consider the differential equation \(\frac{dy}{dx} = \frac{3-x}{y} \).

(a) Let \(y = f(x) \) be the particular solution to the given differential equation for \(1 < x < 5 \) such that the line \(y = -2 \) is tangent to the graph of \(f \). Find the \(x \)-coordinate of the point of tangency, and determine whether \(f \) has a local maximum, local minimum, or neither at this point. Justify your answer.

(b) Let \(y = g(x) \) be the particular solution to the given differential equation for \(-2 < x < 8 \), with the initial condition \(g(6) = -4 \). Find \(y = g(x) \).

\[(a) \quad \frac{dy}{dx} = 0 \text{ when } x = 3 \]
\[\frac{d^2y}{dx^2} \bigg|_{(3,-2)} = \frac{-y - y'(3-x)}{y^2} \bigg|_{(3,-2)} = \frac{1}{2}, \]
so \(f \) has a local minimum at this point.

Because \(f \) is continuous for \(1 < x < 5 \), there is an interval containing \(x = 3 \) on which \(y < 0 \). On this interval, \(\frac{dy}{dx} \) is negative to the left of \(x = 3 \) and \(\frac{dy}{dx} \) is positive to the right of \(x = 3 \). Therefore \(f \) has a local minimum at \(x = 3 \).

\[(b) \quad y \, dy = (3-x) \, dx \]
\[\frac{1}{2} y^2 = 3x - \frac{1}{2} x^2 + C \]
\[8 = 18 - 18 + C ; C = 8 \]
\[y^2 = 6x - x^2 + 16 \]
\[y = -\sqrt{6x - x^2 + 16} \]

\[1 : \text{separates variables} \]
\[1 : \text{antiderivative of } dy \text{ term} \]
\[1 : \text{antiderivative of } dx \text{ term} \]
\[1 : \text{constant of integration} \]
\[1 : \text{uses initial condition } g(6) = -4 \]
\[1 : \text{solves for } y \]

Note: max 3/6 [1-1-0-0-0] if no constant of integration

Note: 0/6 if no separation of variables
Ship A is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship B is traveling due north away from Lighthouse Rock at a speed of 10 km/hr. Let \(x \) be the distance between Ship A and Lighthouse Rock at time \(t \), and let \(y \) be the distance between Ship B and Lighthouse Rock at time \(t \), as shown in the figure above.

(a) Find the distance, in kilometers, between Ship A and Ship B when \(x = 4 \) km and \(y = 3 \) km.

(b) Find the rate of change, in km/hr, of the distance between the two ships when \(x = 4 \) km and \(y = 3 \) km.

(c) Let \(\theta \) be the angle shown in the figure. Find the rate of change of \(\theta \), in radians per hour, when \(x = 4 \) km and \(y = 3 \) km.

(a) Distance \(= \sqrt{3^2 + 4^2} = 5 \) km

(b) \[r^2 = x^2 + y^2 \]

\[2r \frac{dr}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt} \]

or explicitly:

\[r = \sqrt{x^2 + y^2} \]

\[\frac{dr}{dt} = \frac{1}{2 \sqrt{x^2 + y^2}} \left(2x \frac{dx}{dt} + 2y \frac{dy}{dt} \right) \]

At \(x = 4 \), \(y = 3 \),

\[\frac{dr}{dt} = \frac{4(-15) + 3(10)}{5} = -6 \text{ km/hr} \]

(c) \[\tan \theta = \frac{y}{x} \]

\[\sec^2 \theta \frac{d \theta}{dt} = \frac{\frac{dy}{dt} x - \frac{dx}{dt} y}{x^2} \]

At \(x = 4 \) and \(y = 3 \), \(\sec \theta = \frac{5}{4} \)

\[\frac{d \theta}{dt} = \frac{16 \left(10(4) - (-15)(3) \right)}{25} = \frac{16}{16} = 1 \text{ radians/hr} \]
AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 5

A container has the shape of an open right circular cone, as shown in the figure above. The height of the container is 10 cm and the diameter of the opening is 10 cm. Water in the container is evaporating so that its depth h is changing at the constant rate of $\frac{-3}{10}$ cm/hr.

(The volume of a cone of height h and radius r is given by $V = \frac{1}{3} \pi r^2 h$.)

(a) Find the volume V of water in the container when $h = 5$ cm. Indicate units of measure.

(b) Find the rate of change of the volume of water in the container, with respect to time, when $h = 5$ cm. Indicate units of measure.

(c) Show that the rate of change of the volume of water in the container due to evaporation is directly proportional to the exposed surface area of the water. What is the constant of proportionality?

(a) When $h = 5$, $r = \frac{5}{2}$; $V(5) = \frac{1}{3} \pi \left(\frac{5}{2}\right)^2 5 = \frac{125}{12} \pi$ cm3

(b) $\frac{r}{h} = \frac{5}{10}$, so $r = \frac{1}{2} h$

$V = \frac{1}{3} \pi \left(\frac{1}{4} h^2\right) h = \frac{1}{12} \pi h^3$; $\frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt}$

$\left.\frac{dV}{dt}\right|_{h=5} = \frac{1}{4} \pi (25) \left(\frac{-3}{10}\right) = -\frac{15}{8} \pi$ cm3/hr

OR

$\frac{dV}{dt} = \frac{1}{3} \pi \left(r^2 \frac{dh}{dt} + 2rh \frac{dr}{dt} \right)$; $\frac{dr}{dt} = \frac{1}{2} \frac{dh}{dt}$

$\left.\frac{dV}{dt}\right|_{h=5,r=\frac{5}{2}} = \frac{1}{3} \pi \left(\frac{25}{4} \left(\frac{-3}{10}\right) + 2 \left(\frac{5}{2}\right) ^2 \left(\frac{-3}{20}\right) \right)$

$= -\frac{15}{8} \pi$ cm3/hr

(c) $\frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} = -\frac{3}{40} \pi h^2$

$= -\frac{3}{40} \pi \left(2r\right)^2 = -\frac{3}{10} \pi r^2 = -\frac{3}{10} \cdot \text{area}$

The constant of proportionality is $-\frac{3}{10}$.

1 : correct units in (a) and (b)

units of cm3 in (a) and cm3/hr in (b)

1 : V when $h = 5$

1 : $r = \frac{1}{2} h$ in (a) or (b)

V as a function of one variable

in (a) or (b)

1 : evaluation at $h = 5$

2 : $\frac{dV}{dt}$

$< -2 >$ chain rule or product rule error

1 : shows $\frac{dV}{dt} = k \cdot \text{area}$

2 : identifies constant of proportionality

Copyright © 2002 by College Entrance Examination Board. All rights reserved.

Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.
A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let \(h \) be the depth of the coffee in the pot, measured in inches, where \(h \) is a function of time \(t \), measured in seconds. The volume \(V \) of coffee in the pot is changing at the rate of \(-5\pi\sqrt{h}\) cubic inches per second. (The volume \(V \) of a cylinder with radius \(r \) and height \(h \) is \(V = \pi r^2 h \).)

(a) Show that \(\frac{dh}{dt} = -\frac{\sqrt{h}}{5} \)

(b) Given that \(h = 17 \) at time \(t = 0 \), solve the differential equation \(\frac{dh}{dt} = -\frac{\sqrt{h}}{5} \) for \(h \) as a function of \(t \).

(c) At what time \(t \) is the coffeepot empty?
At time t, $t \geq 0$, the volume of a sphere is increasing at a rate proportional to the reciprocal of its radius. At $t = 0$, the radius of the sphere is 1 and at $t = 15$, the radius is 2. (The volume V of a sphere with a radius r is $V = \frac{4}{3} \pi r^3$.)

(a) Find the radius of the sphere as a function of t.

(b) At what time t will the volume of the sphere be 27 times its volume at $t = 0$?
1992 AB6
Solution

(a) \(\frac{dV}{dt} = \frac{k}{r} \)
\[\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \]
\[\frac{k}{r} = 4\pi r^2 \frac{dr}{dt} \]
\[k \frac{dt}{r} = 4\pi r^3 \, dr \]
\[kt + C = \pi r^4 \]

At \(t = 0, \ r = 1 \), so \(C = \pi \)
At \(t = 15, \ r = 2 \), so \(15k + \pi = 16\pi, \ k = \pi \)
\[\pi r^4 = \pi t + \pi \]
\[r = \sqrt[3]{t+1} \]

(b) At \(t = 0, \ r = 1 \), so \(V(0) = \frac{4}{3}\pi \)
\[27V(0) = 27 \left(\frac{4}{3}\pi \right) = 36\pi \]
\[36\pi = \frac{4}{3}\pi r^3 \]
\[r = \frac{3}{4} \]
\[\sqrt[3]{t+1} = 3 \]
\[t = 80 \]
The radius \(r \) of a sphere is increasing at a constant rate of 0.04 centimeters per second. (Note: The volume of a sphere with radius \(r \) is \(V = \frac{4}{3} \pi r^3 \).)

(a) At the time when the radius of the sphere is 10 centimeters, what is the rate of increase of its volume?

(b) At the time when the volume of the sphere is \(36\pi \) cubic centimeters, what is the rate of increase of the area of a cross section through the center of the sphere?

(c) At the time when the volume and the radius of the sphere are increasing at the same numerical rate, what is the radius?
(a) \(\frac{dV}{dt} = \frac{4}{3} \pi r^3 \frac{dr}{dt} \)

Therefore when \(r = 10 \), \(\frac{dr}{dt} = 0.04 \)

\(\frac{dV}{dt} = 4\pi 10^2 (0.04) = 16\pi \) cm\(^3\)/sec

(b) \(V = 36\pi \Rightarrow 36 = \frac{4}{3} r^3 \Rightarrow r^3 = 27 \Rightarrow r = 3 \)

\(A = \pi r^2 \)

\(\frac{dA}{dt} = 2\pi r \frac{dr}{dt} \)

Therefore when \(V = 36\pi \), \(\frac{dr}{dt} = 0.04 \)

\(\frac{dA}{dt} = 2\pi \cdot 3 (0.04) = \frac{6\pi}{25} = 0.24\pi \) cm\(^2\)/sec

(c) \(\frac{dV}{dt} = \frac{dr}{dt} \)

\(4\pi r^2 \frac{dr}{dt} = \frac{dr}{dt} \Rightarrow 4\pi r^2 = 1 \)

Therefore \(r^2 = \frac{1}{4\pi} \Rightarrow r = \frac{1}{2\sqrt{\pi}} \) cm
5. The graph of the function \(f \), consisting of three line segments, is given above. Let \(g(x) = \int_1^x f(t) \, dt \).

(a) Compute \(g(4) \) and \(g(-2) \).

(b) Find the instantaneous rate of change of \(g \), with respect to \(x \), at \(x = 1 \).

(c) Find the absolute minimum value of \(g \) on the closed interval \([-2, 4]\). Justify your answer.

(d) The second derivative of \(g \) is not defined at \(x = 1 \) and \(x = 2 \). How many of these values are \(x \)-coordinates of points of inflection of the graph of \(g \)? Justify your answer.

\[
g(4) = \int_1^4 f(t) \, dt = \frac{3}{2} + 1 + \frac{1}{2} - \frac{1}{2} = \frac{5}{2}
\]

\[
g(-2) = \int_1^{-2} f(t) \, dt = -\frac{1}{2}(12) = -6
\]

(b) \(g'(1) = f(1) = 4 \)

(c) \(g \) is increasing on \([-2, 3]\) and decreasing on \([3, 4]\).

Therefore, \(g \) has absolute minimum at an endpoint of \([-2, 4]\).

Since \(g(-2) = -6 \) and \(g(4) = \frac{5}{2} \),

the absolute minimum value is \(-6\).

(d) One: \(x = 1 \)

On \((-2, 1)\), \(g''(x) = f'(x) > 0 \)

On \((1, 2)\), \(g''(x) = f'(x) < 0 \)

On \((2, 4)\), \(g''(x) = f'(x) < 0 \)

Therefore \((1, g(1))\) is a point of inflection and \((2, g(2))\) is not.
Question 3

A car is traveling on a straight road with velocity 55 ft/sec at time $t = 0$. For $0 \leq t \leq 18$ seconds, the car’s acceleration $a(t)$, in ft/sec2, is the piecewise linear function defined by the graph above.

(a) Is the velocity of the car increasing at $t = 2$ seconds? Why or why not?

(b) At what time in the interval $0 \leq t \leq 18$, other than $t = 0$, is the velocity of the car 55 ft/sec? Why?

(c) On the time interval $0 \leq t \leq 18$, what is the car’s absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.

(d) At what times in the interval $0 \leq t \leq 18$, if any, is the car’s velocity equal to zero? Justify your answer.

(a) Since $v'(2) = a(2)$ and $a(2) = 15 > 0$, the velocity is increasing at $t = 2$.

(b) At time $t = 12$ because

$$v(12) - v(0) = \int_0^{12} a(t)\,dt = 0.$$

(c) The absolute maximum velocity is 115 ft/sec at $t = 6$.

The absolute maximum must occur at $t = 6$ or at an endpoint.

$$v(6) = 55 + \int_0^6 a(t)\,dt$$

$$= 55 + 2(15) + \frac{1}{2}(4)(15) = 115 > v(0)$$

$$\int_6^{18} a(t)\,dt < 0 \text{ so } v(18) < v(6)$$

(d) The car’s velocity is never equal to 0. The absolute minimum occurs at $t = 16$ where

$$v(16) = 115 + \int_6^{16} a(t)\,dt = 115 - 105 = 10 > 0.$$
The graph of a differentiable function \(f \) on the closed interval \([-3, 15]\) is shown in the figure above. The graph of \(f \) has a horizontal tangent line at \(x = 6 \). Let

\[
g(x) = 5 + \int_{-3}^{x} f(t) \, dt \quad \text{for} \quad -3 \leq x \leq 15.
\]

(a) Find \(g(6) \), \(g'(6) \), and \(g''(6) \).

(b) On what intervals is \(g \) decreasing? Justify your answer.

(c) On what intervals is the graph of \(g \) concave down? Justify your answer.

(d) Find a trapezoidal approximation of \(\int_{-3}^{15} f(t) \, dt \) using six subintervals of length \(\Delta t = 3 \).

\[
(a) \quad g(6) = 5 + \int_{-3}^{6} f(t) \, dt = 5
\]
\[
g'(6) = f(6) = 3
\]
\[
g''(6) = f'(6) = 0
\]

\[
(b) \quad g \text{ is decreasing on } [-3, 0] \text{ and } [12, 15] \text{ since}
\]
\[
g'(x) = f(x) < 0 \text{ for } x < 0 \text{ and } x > 12.
\]

\[
(c) \quad \text{The graph of } g \text{ is concave down on } (6, 15) \text{ since}
\]
\[
g' = f \text{ is decreasing on this interval.}
\]

\[
(d) \quad \frac{3}{2}((-1 + 2(0 + 1 + 3 + 1 + 0) - 1)
\]
\[
= 12
\]
The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t) \, dt$.

(a) Find $g(-1)$, $g'(-1)$, and $g''(-1)$.
(b) For what values of x in the open interval $(-2, 2)$ is g increasing? Explain your reasoning.
(c) For what values of x in the open interval $(-2, 2)$ is the graph of g concave down? Explain your reasoning.
(d) On the axes provided, sketch the graph of g on the closed interval $[-2, 2]$.

\[g(-1) = \int_0^{-1} f(t) \, dt = -\int_{-1}^0 f(t) \, dt = -\frac{3}{2} \]
\[g'(-1) = f(-1) = 0 \]
\[g''(-1) = f'(-1) = 3 \]

(b) g is increasing on $-1 < x < 1$ because $g'(x) = f(x) > 0$ on this interval.

(c) The graph of g is concave down on $0 < x < 2$ because $g''(x) = f'(x) < 0$ on this interval.

\[g(-2) = g(0) = g(2) = 0 \]

1: appropriate increasing/decreasing
and concavity behavior
$< -1 >$ vertical asymptote
Let f be a function defined on the closed interval $[0,7]$. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_2^x f(t) \, dt$.

(a) Find $g(3)$, $g'(3)$, and $g''(3)$.

(b) Find the average rate of change of g on the interval $0 \leq x \leq 3$.

(c) For how many values c, where $0 < c < 3$, is $g'(c)$ equal to the average rate found in part (b)? Explain your reasoning.

(d) Find the x-coordinate of each point of inflection of the graph of g on the interval $0 < x < 7$. Justify your answer.

(a) $g(3) = \int_2^3 f(t) \, dt = \frac{1}{2} (4 + 2) = 3$

$g'(3) = f(3) = 2$

$g''(3) = f'(3) = \frac{0 - 4}{4 - 2} = -2$

(b) $g(3) - g(0) = \int_0^3 f(t) \, dt$

$= \frac{1}{3} \left(\int_0^3 f(t) \, dt \right)$

$= \frac{1}{3} \left(\frac{1}{2} (2)(4) + \frac{1}{2} (4 + 2) \right) = \frac{7}{3}$

(c) There are two values of c.

We need $\frac{7}{3} = g'(c) = f(c)$

The graph of f intersects the line $y = \frac{7}{3}$ at two places between 0 and 3.

(d) $x = 2$ and $x = 5$

because $g' = f$ changes from increasing to decreasing at $x = 2$, and from decreasing to increasing at $x = 5$.

Note: 1/2 if answer is 1 by MVT
Question 4

Let \(f \) be a function defined on the closed interval \(-3 \leq x \leq 4\) with \(f(0) = 3 \). The graph of \(f' \), the derivative of \(f \), consists of one line segment and a semicircle, as shown above.

(a) On what intervals, if any, is \(f \) increasing? Justify your answer.

(b) Find the \(x \)-coordinate of each point of inflection of the graph of \(f \) on the open interval \(-3 < x < 4\). Justify your answer.

(c) Find an equation for the line tangent to the graph of \(f \) at the point \((0,3)\).

(d) Find \(f(-3) \) and \(f(4) \). Show the work that leads to your answers.

(a) The function \(f \) is increasing on \([-3,-2]\) since \(f' > 0 \) for \(-3 \leq x < -2\).

(b) \(x = 0 \) and \(x = 2 \)
 \(f' \) changes from decreasing to increasing at \(x = 0 \) and from increasing to decreasing at \(x = 2 \)

(c) \(f'(0) = -2 \)
 Tangent line is \(y = -2x + 3 \).

(d) \(f(0) - f(-3) = \int_{-3}^{0} f'(t) \, dt \)
 \[= \frac{1}{2}(1) - \frac{1}{2}(2)(2) = -\frac{3}{2} \]
 \(f(-3) = f(0) + \frac{3}{2} = \frac{9}{2} \)
 \(f(4) - f(0) = \int_{0}^{4} f'(t) \, dt \)
 \[= -\left(8 - \frac{1}{2}(2)^2\pi\right) = -8 + 2\pi \]
 \(f(4) = f(0) - 8 + 2\pi = -5 + 2\pi \)
The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x) = \int_{-3}^{x} f(t) \, dt$.

(a) Find $g(0)$ and $g'(0)$.

(b) Find all values of x in the open interval $(-5, 4)$ at which g attains a relative maximum. Justify your answer.

(c) Find the absolute minimum value of g on the closed interval $[-5, 4]$. Justify your answer.

(d) Find all values of x in the open interval $(-5, 4)$ at which the graph of g has a point of inflection.

\[
\begin{align*}
(a) \quad g(0) &= \int_{-3}^{0} f(t) \, dt = \frac{1}{2}(3)(2 + 1) = \frac{9}{2} \\
& \quad g'(0) = f(0) = 1 \\
(b) \quad & g \text{ has a relative maximum at } x = 3. \\
& \quad \text{This is the only } x\text{-value where } g' = f \text{ changes from positive to negative.} \\
(c) \quad & \text{The only } x\text{-value where } f \text{ changes from negative to positive is } x = -4. \text{ The other candidates for the location of the absolute minimum value are the endpoints.} \\
& \quad g(-5) = 0 \\
& \quad g(-4) = \int_{-3}^{-4} f(t) \, dt = -1 \\
& \quad g(4) = \frac{9}{2} + \left(2 - \frac{\pi}{2}\right) = \frac{13 - \pi}{2} \\
& \quad \text{So the absolute minimum value of } g \text{ is } -1. \\
(d) \quad & x = -3, 1, 2 \\
\end{align*}
\]
The graph of the function f above consists of three line segments.

(a) Let g be the function given by $g(x) = \int_{-4}^{x} f(t) \, dt$.

For each of $g(-1)$, $g'(-1)$, and $g''(-1)$, find the value or state that it does not exist.

(b) For the function g defined in part (a), find the x-coordinate of each point of inflection of the graph of g on the open interval $-4 < x < 3$. Explain your reasoning.

(c) Let h be the function given by $h(x) = \int_{x}^{3} f(t) \, dt$. Find all values of x in the closed interval $-4 \leq x \leq 3$ for which $h(x) = 0$.

(d) For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| (a) | $g(-1) = \int_{-4}^{-1} \, f(t) \, dt = -\frac{1}{2}(3)(5) = -\frac{15}{2}$ | 1 : $g(-1)$
3 : 1 : $g'(-1)$
1 : $g''(-1)$ |
| (b) | $x = 1$
$g' = f$ changes from increasing to decreasing at $x = 1$. | 2 : 1 : $x = 1$ (only)
1 : reason |
| (c) | $x = -1$, 1, 3 | 2 : correct values
(-1) each missing or extra value |
| (d) | h is decreasing on $[0, 2]$
$h' = -f < 0$ when $f > 0$ | 2 : 1 : interval
1 : reason |
Question 5

A car is traveling on a straight road. For $0 \leq t \leq 24$ seconds, the car’s velocity $v(t)$, in meters per second, is modeled by the piecewise-linear function defined by the graph above.

(a) Find $\int_0^{24} v(t) \, dt$. Using correct units, explain the meaning of $\int_0^{24} v(t) \, dt$.

(b) For each of $v'(4)$ and $v'(20)$, find the value or explain why it does not exist. Indicate units of measure.

(c) Let $a(t)$ be the car’s acceleration at time t, in meters per second per second. For $0 < t < 24$, write a piecewise-defined function for $a(t)$.

(d) Find the average rate of change of v over the interval $8 \leq t \leq 20$. Does the Mean Value Theorem guarantee a value of c, for $8 < c < 20$, such that $v'(c)$ is equal to this average rate of change? Why or why not?

(a) $\int_0^{24} v(t) \, dt = \frac{1}{2}(4)(20) + (12)(20) + \frac{1}{2}(8)(20) = 360$

The car travels 360 meters in these 24 seconds.

(b) $v'(4)$ does not exist because

$$\lim_{t \to 4^-} \left(\frac{v(t) - v(4)}{t - 4} \right) = \frac{5}{4} \neq 0 = \lim_{t \to 4^+} \left(\frac{v(t) - v(4)}{t - 4} \right).$$

$v'(20) = \frac{20 - 0}{16 - 24} = -\frac{5}{2} \text{ m/sec}^2$

(c) $a(t) = \begin{cases} 5 & \text{if } 0 < t < 4 \\ 0 & \text{if } 4 < t < 16 \\ -\frac{5}{2} & \text{if } 16 < t < 24 \end{cases}$

$a(t)$ does not exist at $t = 4$ and $t = 16$.

(d) The average rate of change of v on $[8, 20]$ is

$$\frac{v(20) - v(8)}{20 - 8} = -\frac{5}{6} \text{ m/sec}^2.$$

No, the Mean Value Theorem does not apply to v on $[8, 20]$ because v is not differentiable at $t = 16$.
The rate, in calories per minute, at which a person using an exercise machine burns calories is modeled by the function \(f \). In the figure above, \(f(t) = \frac{-1}{4} t^3 + \frac{3}{2} t^2 + 1 \) for \(0 \leq t \leq 4 \) and \(f \) is piecewise linear for \(4 < t \leq 24 \).

(a) Find \(f'(22) \). Indicate units of measure.

(b) For the time interval \(0 \leq t \leq 24 \), at what time \(t \) is \(f \) increasing at its greatest rate? Show the reasoning that supports your answer.

(c) Find the total number of calories burned over the time interval \(6 \leq t \leq 18 \) minutes.

(d) The setting on the machine is now changed so that the person burns \(f(t) + c \) calories per minute. For this setting, find \(c \) so that an average of 15 calories per minute is burned during the time interval \(6 < t < 18 \).

\[
\begin{align*}
(a) & \quad f'(22) = \frac{15 - 3}{20 - 24} = -3 \text{ calories/min/min} \\
(b) & \quad f \text{ is increasing on } [0, 4] \text{ and on } [12, 16]. \\
& \quad \text{On } (12, 16), \quad f'(t) = \frac{15 - 9}{16 - 12} = \frac{3}{2} \text{ since } f \text{ has constant slope on this interval.} \\
& \quad \text{On } (0, 4), \quad f'(t) = -\frac{3}{4} t^2 + 3t \quad \text{and} \\
& \quad f''(t) = -\frac{3}{2} t + 3 = 0 \text{ when } t = 2. \text{ This is where } f' \text{ has a maximum on } [0, 4] \text{ since } f'' > 0 \text{ on } (0, 2) \text{ and } f'' < 0 \text{ on } (2, 4). \\
& \quad \text{On } [0, 24], \quad f \text{ is increasing at its greatest rate when } t = 2 \text{ because } f'(2) = 3 > \frac{3}{2}. \\
(c) & \quad \int_6^{18} f(t) \, dt = 6(9) + \frac{1}{2}(4)(9 + 15) + 2(15) \\
& \quad = 132 \text{ calories} \\
(d) & \quad \text{We want } \frac{1}{12} \int_6^{18} (f(t) + c) \, dt = 15. \\
& \quad \text{This means } 132 + 12c = 15(12). \text{ So, } c = 4. \text{ OR} \\
& \quad \text{Currently, the average is } \frac{132}{12} = 11 \text{ calories/min.} \\
& \quad \text{Adding } c \text{ to } f(t) \text{ will shift the average by } c. \\
& \quad \text{So } c = 4 \text{ to get an average of 15 calories/min.}
\end{align*}
\]
The graph of the function f shown above consists of six line segments. Let g be the function given by $g(x) = \int_0^x f(t) \, dt$.

(a) Find $g(4)$, $g'(4)$, and $g''(4)$.

(b) Does g have a relative minimum, a relative maximum, or neither at $x = 1$? Justify your answer.

(c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5. The graph above shows two periods of f. Given that $g(5) = 2$, find $g(10)$ and write an equation for the line tangent to the graph of g at $x = 108$.

(a) $g(4) = \int_0^4 f(t) \, dt = 3$

$g'(4) = f(4) = 0$

$g''(4) = f''(4) = -2$

(b) g has a relative minimum at $x = 1$ because $g' = f$ changes from negative to positive at $x = 1$.

2: \[
\begin{align*}
1 &: \text{answer} \\
1 &: \text{reason}
\end{align*}
\]

(c) $g(0) = 0$ and the function values of g increase by 2 for every increase of 5 in x.

$g(10) = 2g(5) = 4$

$g(108) = \int_0^{105} f(t) \, dt + \int_{105}^{108} f(t) \, dt$

$= 21g(5) + g(3) = 44$

$g'(108) = f(108) = f(3) = 2$

An equation for the line tangent to the graph of g at $x = 108$ is $y = 44 - 2(x - 108)$.

4: \[
\begin{align*}
1 &: \text{g(108)} \\
3 &: \text{g'(108)} \\
1 &: \text{equation of tangent line}
\end{align*}
\]
Let \(f \) be a function defined on the closed interval \(-5 \leq x \leq 5\) with \(f(1) = 3 \). The graph of \(f' \), the derivative of \(f \), consists of two semicircles and two line segments, as shown above.

(a) For \(-5 < x < 5\), find all values \(x \) at which \(f \) has a relative maximum. Justify your answer.

(b) For \(-5 < x < 5\), find all values \(x \) at which the graph of \(f \) has a point of inflection. Justify your answer.

(c) Find all intervals on which the graph of \(f \) is concave up and also has positive slope. Explain your reasoning.

(d) Find the absolute minimum value of \(f(x) \) over the closed interval \(-5 \leq x \leq 5\). Explain your reasoning.

\[
\begin{align*}
\text{(a)} & \quad f'(x) = 0 \text{ at } x = -3, 1, 4 \\
& \quad f' \text{ changes from positive to negative at } -3 \text{ and } 4. \\
& \quad \text{Thus, } f \text{ has a relative maximum at } x = -3 \text{ and at } x = 4.
\end{align*}
\]

\[
\begin{align*}
\text{(b)} & \quad f' \text{ changes from increasing to decreasing, or vice versa, at } x = -4, -1, \text{ and } 2. \\
& \quad \text{Thus, the graph of } f \text{ has points of inflection when } x = -4, -1, \text{ and } 2.
\end{align*}
\]

\[
\begin{align*}
\text{(c)} & \quad \text{The graph of } f \text{ is concave up with positive slope where } f' \text{ is increasing and positive: } -5 < x < -4 \text{ and } 1 < x < 2.
\end{align*}
\]

\[
\begin{align*}
\text{(d)} & \quad \text{Candidates for the absolute minimum are where } f' \text{ changes from negative to positive (at } x = 1) \text{ and at the endpoints (} x = -5, 5). \\
& \quad f(-5) = 3 + \int_{1}^{-5} f'(x) \, dx = 3 - \frac{\pi}{2} + 2\pi > 3 \\
& \quad f(1) = 3 \\
& \quad f(5) = 3 + \int_{1}^{5} f'(x) \, dx = 3 + \frac{3 \cdot 2}{2} - \frac{1}{2} > 3 \\
\end{align*}
\]

The absolute minimum value of \(f \) on \([-5, 5]\) is \(f(1) = 3 \).
Two runners, A and B, run on a straight racetrack for $0 \leq t \leq 10$ seconds. The graph above, which consists of two line segments, shows the velocity, in meters per second, of Runner A. The velocity, in meters per second, of Runner B is given by the function v defined by $v(t) = \frac{24t}{2t + 3}$.

(a) Find the velocity of Runner A and the velocity of Runner B at time $t = 2$ seconds. Indicate units of measure.

(b) Find the acceleration of Runner A and the acceleration of Runner B at time $t = 2$ seconds. Indicate units of measure.

(c) Find the total distance run by Runner A and the total distance run by Runner B over the time interval $0 \leq t \leq 10$ seconds. Indicate units of measure.

(a) Runner A: velocity $= \frac{10}{3} \cdot 2 = \frac{20}{3}$

$= 6.667$ or 6.667 meters/sec

Runner B: $v(2) = \frac{48}{4} = 6.857$ meters/sec

(b) Runner A: acceleration $= \frac{10}{3} = 3.333$ meters/sec2

Runner B: $a(2) = v’(2) = \left. \frac{72}{(2t + 3)^2} \right|_{t=2}$

$= \frac{72}{49} = 1.469$ meters/sec2

(c) Runner A: distance $= \frac{1}{2}(3)(10) + 7(10) = 85$ meters

Runner B: distance $= \int_0^{10} \frac{24t}{2t + 3} \, dt = 83.336$ meters

(units) meters/sec in part (a), meters/sec2 in part (b), and meters in part (c), or equivalent.
Let \(g \) be a continuous function with \(g(2) = 5 \). The graph of the piecewise-linear function \(g' \), the derivative of \(g \), is shown above for \(-3 \leq x \leq 7\).

(a) Find the \(x \)-coordinate of all points of inflection of the graph of \(y = g(x) \) for \(-3 < x < 7\). Justify your answer.

(b) Find the absolute maximum value of \(g \) on the interval \(-3 \leq x \leq 7\). Justify your answer.

(c) Find the average rate of change of \(g(x) \) on the interval \(-3 \leq x \leq 7\).

(d) Find the average rate of change of \(g'(x) \) on the interval \(-3 < x < 7\). Does the Mean Value Theorem applied on the interval \(-3 \leq x \leq 7\) guarantee a value of \(c \), for \(-3 < c < 7\), such that \(g''(c) \) is equal to this average rate of change? Why or why not?

(a) \(g' \) changes from increasing to decreasing at \(x = 1 \); \(g' \) changes from decreasing to increasing at \(x = 4 \).

Points of inflection for the graph of \(y = g(x) \) occur at \(x = 1 \) and \(x = 4 \).

(b) The only sign change of \(g' \) from positive to negative in the interval is at \(x = 2 \).

\[
g(-3) = 5 + \int_{2}^{-3} g'(x) \, dx = 5 + \left(-\frac{3}{2}\right) + 4 = \frac{15}{2}
\]

\[
g(2) = 5
\]

\[
g(7) = 5 + \int_{2}^{7} g'(x) \, dx = 5 + (-4) + \frac{1}{2} = \frac{3}{2}
\]

The maximum value of \(g \) for \(-3 \leq x \leq 7\) is \(\frac{15}{2} \).

(c) \[
\frac{g(7) - g(-3)}{7 - (-3)} = \frac{\frac{3}{2} - \frac{15}{2}}{10} = -\frac{3}{5}
\]

(d) \[
\frac{g'(7) - g'(-3)}{7 - (-3)} = \frac{1 - (-4)}{10} = \frac{1}{2}
\]

No, the MVT does not guarantee the existence of a value \(c \) with the stated properties because \(g' \) is not differentiable for at least one point in \(-3 < x < 7\).
6. Consider the curve defined by $2y^3 + 6x^2y - 12x^2 + 6y = 1$.

(a) Show that $\frac{dy}{dx} = \frac{4x - 2xy}{x^2 + y^2 + 1}$.

(b) Write an equation of each horizontal tangent line to the curve.

(c) The line through the origin with slope -1 is tangent to the curve at point P. Find the x- and y-coordinates of point P.

(a) $6y^2 \frac{dy}{dx} + 6x^2 \frac{dy}{dx} + 12xy - 24x + 6 \frac{dy}{dx} = 0$

$$\frac{dy}{dx} (6y^2 + 6x^2 + 6) = 24x - 12xy$$

$$\frac{dy}{dx} = \frac{24x - 12xy}{6x^2 + 6y^2 + 6} = \frac{4x - 2xy}{x^2 + y^2 + 1}$$

(b) $\frac{dy}{dx} = 0$

$4x - 2xy = 2x(2 - y) = 0$

$x = 0$ or $y = 2$

When $x = 0$, $2y^3 + 6y = 1$; $y = 0.165$

There is no point on the curve with y coordinate of 2.

$y = 0.165$ is the equation of the only horizontal tangent line.

(c) $y = -x$ is equation of the line.

$2(-x)^3 + 6x^2(-x) - 12x^2 + 6(-x) = 1$

$-8x^3 - 12x^2 - 6x - 1 = 0$

$x = -1/2$, $y = 1/2$

or

$\frac{dy}{dx} = -1$

$4x - 2xy = -x^2 - y^2 - 1$

$4x + 2x^2 = -x^2 - x^2 - 1$

$4x^2 + 4x + 1 = 0$

$x = -1/2$, $y = 1/2$
Consider the curve given by \(xy^2 - x^3 y = 6 \).

(a) Show that \(\frac{dy}{dx} = \frac{3x^2 y - y^2}{2xy - x^3} \).

(b) Find all points on the curve whose \(x \)-coordinate is 1, and write an equation for the tangent line at each of these points.

(c) Find the \(x \)-coordinate of each point on the curve where the tangent line is vertical.

\[y^2 + 2xy \frac{dy}{dx} - 3x^2 y - x^3 \frac{dy}{dx} = 0 \]

\[\frac{dy}{dx}(2xy - x^3) = 3x^2 y - y^2 \]

\[\frac{dy}{dx} = \frac{3x^2 y - y^2}{2xy - x^3} \]

(b) When \(x = 1 \), \(y^2 - y = 6 \)

\[y^2 - y - 6 = 0 \]

\[(y - 3)(y + 2) = 0 \]

\(y = 3, \ y = -2 \)

At \((1,3)\), \(\frac{dy}{dx} = \frac{9 - 9}{6 - 1} = 0 \)

Tangent line equation is \(y = 3 \)

At \((1,-2)\), \(\frac{dy}{dx} = \frac{-6 - 4}{-4 - 1} = \frac{-10}{-5} = 2 \)

Tangent line equation is \(y + 2 = 2(x - 1) \)

(c) Tangent line is vertical when \(2xy - x^3 = 0 \)

\(x(2y - x^2) = 0 \) gives \(x = 0 \) or \(y = \frac{1}{2} x^2 \)

There is no point on the curve with \(x \)-coordinate 0.

When \(y = \frac{1}{2} x^2 \), \(\frac{1}{4} x^5 - \frac{1}{2} x^5 = 6 \)

\[\frac{-1}{4} x^5 = 6 \]

\[x = \sqrt[3]{-24} \]

\[1: \text{implicit differentiation} \]

\[2 \begin{cases} 1: \text{verifies expression for } \frac{dy}{dx} \\ 1: y^2 - y = 6 \\ 2: \text{tangent lines} \end{cases} \]

Note: 0/4 if not solving an equation of the form \(y^2 - y = k \)

\[3 \begin{cases} 1: \text{sets denominator of } \frac{dy}{dx} \text{ equal to 0} \\ 1: \text{substitutes } y = \frac{1}{2} x^2 \text{ or } x = \pm \sqrt{2y} \text{ into the equation for the curve} \\ 1: \text{solves for } x \text{-coordinate} \end{cases} \]
The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of $y = f(x)$, and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2 \left(6 - 2x\right)$.

(a) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.

(b) Find $y = f(x)$ by solving the differential equation $\frac{dy}{dx} = y^2 \left(6 - 2x\right)$ with the initial condition $f(3) = \frac{1}{4}$.

\begin{align*}
\text{(a)} & \quad \frac{d^2y}{dx^2} = 2y \frac{dy}{dx} (6 - 2x) - 2y^2 \\
& = 2y^3 (6 - 2x)^2 - 2y^2 \\
& \quad \frac{d^2y}{dx^2} \bigg|_{\left(3, \frac{1}{4}\right)} = 0 - 2 \left(\frac{1}{4}\right)^2 = -\frac{1}{8}
\end{align*}

\begin{align*}
\text{(b)} & \quad \frac{1}{y^2} \frac{dy}{dx} = (6 - 2x) dx \\
& = -\frac{1}{y} = 6x - x^2 + C \\
& = -4 = 18 - 9 + C = 9 + C \\
& \quad C = -13 \\
& \quad y = \frac{1}{x^2 - 6x + 13}
\end{align*}

Note: max 3/6 [1-1-1-0-0-0] if no constant of integration
Note: 0/6 if no separation of variables
Consider the curve given by \(x^2 + 4y^2 = 7 + 3xy \).

(a) Show that \(\frac{dy}{dx} = \frac{3y - 2x}{8y - 3x} \).

(b) Show that there is a point \(P \) with \(x \)-coordinate 3 at which the line tangent to the curve at \(P \) is horizontal. Find the \(y \)-coordinate of \(P \).

(c) Find the value of \(\frac{d^2y}{dx^2} \) at the point \(P \) found in part (b). Does the curve have a local maximum, a local minimum, or neither at the point \(P \)? Justify your answer.

\[(a) \quad 2x + 8y y' = 3y + 3xy' \\
\quad (8y - 3x) y' = 3y - 2x \\
\quad y' = \frac{3y - 2x}{8y - 3x} \]

\[(b) \quad \frac{3y - 2x}{8y - 3x} = 0; \quad 3y - 2x = 0 \]

When \(x = 3 \), \(3y = 6 \) \quad \[y = 2 \]

\(3^2 + 4 \cdot 2^2 = 25 \) and \(7 + 3 \cdot 2 = 25 \)

Therefore, \(P = (3, 2) \) is on the curve and the slope is 0 at this point.

\[(c) \quad \frac{d^2y}{dx^2} = \frac{(8y - 3x)(3y' - 2) - (3y - 2x)(8y' - 3)}{(8y - 3x)^2} \]

At \(P = (3, 2) \), \(\frac{d^2y}{dx^2} = \frac{(16 - 9)(-2) - (16 - 9) \cdot 2}{(16 - 9)^2} = -\frac{2}{7} \).

Since \(y' = 0 \) and \(y'' < 0 \) at \(P \), the curve has a local maximum at \(P \).
Consider the curve given by \(y^2 = 2 + xy \).

(a) Show that \(\frac{dy}{dx} = \frac{y}{2y - x} \).

(b) Find all points \((x, y)\) on the curve where the line tangent to the curve has slope \(\frac{1}{2} \).

(c) Show that there are no points \((x, y)\) on the curve where the line tangent to the curve is horizontal.

(d) Let \(x \) and \(y \) be functions of time \(t \) that are related by the equation \(y^2 = 2 + xy \). At time \(t = 5 \), the value of \(y \) is 3 and \(\frac{dy}{dt} = 6 \). Find the value of \(\frac{dx}{dt} \) at time \(t = 5 \).

\[
\begin{align*}
\text{(a)} \quad 2y' &= y + xy' \\
(2y - x)y' &= y \\
y' &= \frac{y}{2y - x}
\end{align*}
\]

\[
\begin{align*}
\text{(b)} \quad \frac{y}{2y - x} &= \frac{1}{2} \\
2y &= 2y - x \\
x &= 0 \\
y &= \pm\sqrt{2} \\
(0, \sqrt{2}), (0, -\sqrt{2})
\end{align*}
\]

\[
\begin{align*}
\text{(c)} \quad \frac{y}{2y - x} &= 0 \\
y &= 0 \\
The \text{ curve has no horizontal tangent since } 0^2 \neq 2 + x \cdot 0 \text{ for any } x.
\end{align*}
\]

\[
\begin{align*}
\text{(d)} \quad \text{When } y = 3, \quad 3^2 &= 2 + 3x \text{ so } x = \frac{7}{3} \\
\frac{dy}{dt} &= \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{y}{2y - x} \cdot \frac{dx}{dt} \\
\text{At } t = 5, \quad 6 &= \frac{3}{6 - \frac{7}{3}} \cdot \frac{dx}{dt} = \frac{9}{11} \cdot \frac{dx}{dt} \\
\frac{dx}{dt} \bigg|_{t=5} &= \frac{22}{3}
\end{align*}
\]
1. A particle moves along the y-axis with velocity given by $v(t) = t \sin(t^2)$ for $t \geq 0$.
 (a) In which direction (up or down) is the particle moving at time $t = 1.5$? Why?
 (b) Find the acceleration of the particle at time $t = 1.5$. Is the velocity of the particle increasing at $t = 1.5$? Why or why not?
 (c) Given that $y(t)$ is the position of the particle at time t and that $y(0) = 3$, find $y(2)$.
 (d) Find the total distance traveled by the particle from $t = 0$ to $t = 2$.

(a) $v(1.5) = 1.5 \sin(1.5^2) = 1.167$
 Up, because $v(1.5) > 0$

(b) $a(t) = v'(t) = \sin t^2 + 2t^2 \cos t^2$
 $a(1.5) = v'(1.5) = -2.048 \text{ or } -2.049$
 No; v is decreasing at 1.5 because $v'(1.5) < 0$

(c) $y(t) = \int v(t) \, dt$
 \[= \int t \sin t^2 \, dt = -\frac{\cos t^2}{2} + C \]
 $y(0) = 3 = -\frac{1}{2} + C \implies C = \frac{7}{2}$
 $y(t) = -\frac{1}{2} \cos t^2 + \frac{7}{2}$
 $y(2) = -\frac{1}{2} \cos 4 + \frac{7}{2} = 3.826 \text{ or } 3.827$

(d) Distance = $\int_0^2 |v(t)| \, dt = 1.173$

or

$v(t) = t \sin t^2 = 0$

$t = 0 \text{ or } t = \sqrt{\pi} \approx 1.772$

$y(0) = 3; \quad y(\sqrt{\pi}) = 4; \quad y(2) = 3.826 \text{ or } 3.827$

$[y(\sqrt{\pi}) - y(0)] + [y(\sqrt{\pi}) - y(2)]$

$= 1.173 \text{ or } 1.174$
AP® CALCULUS AB
2002 SCORING GUIDELINES (Form B)

Question 3

A particle moves along the x-axis so that its velocity \(v\) at any time \(t\), for \(0 \leq t \leq 16\), is given by
\[v(t) = e^{2\sin t} - 1 \]. At time \(t = 0\), the particle is at the origin.
(a) On the axes provided, sketch the graph of \(v(t)\) for \(0 \leq t \leq 16\).
(b) During what intervals of time is the particle moving to the left? Give a reason for your answer.
(c) Find the total distance traveled by the particle from \(t = 0\) to \(t = 4\).
(d) Is there any time \(t\), \(0 < t \leq 16\), at which the particle returns to the origin? Justify your answer.

\[\text{Copyright © 2002 by College Entrance Examination Board. All rights reserved.} \]
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.
AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 3

An object moves along the x-axis with initial position $x(0) = 2$. The velocity of the object at time $t \geq 0$ is given by $v(t) = \sin \left(\frac{\pi}{3} t \right)$.

(a) What is the acceleration of the object at time $t = 4$?

(b) Consider the following two statements.

Statement I: For $3 < t < 4.5$, the velocity of the object is decreasing.

Statement II: For $3 < t < 4.5$, the speed of the object is increasing.

Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.

(c) What is the total distance traveled by the object over the time interval $0 \leq t \leq 4$?

(d) What is the position of the object at time $t = 4$?

(a) $a(4) = v'(4) = \frac{\pi}{3} \cos \left(\frac{4\pi}{3} \right)$

$= -\frac{\pi}{6}$ or -0.523 or -0.524

(b) On $3 < t < 4.5$:

$a(t) = v'(t) = \frac{\pi}{3} \cos \left(\frac{\pi}{3} t \right) < 0$

Statement I is correct since $a(t) < 0$.

Statement II is correct since $v(t) < 0$ and $a(t) < 0$.

(c) Distance $= \int_0^4 |v(t)| dt = 2.387$

OR

$x(t) = -\frac{3}{\pi} \cos \left(\frac{\pi}{3} t \right) + \frac{3}{\pi} + 2$

$x(0) = 2$

$x(4) = 2 + \frac{9}{2\pi} =$ 3.43239

$v(t) = 0$ when $t = 3$

$x(3) = \frac{6}{\pi} + 2 = 3.90986$

$|x(3) - x(0)| + |x(4) - x(3)| = \frac{15}{2\pi} = 2.387$

(d) $x(4) = x(0) + \int_0^4 v(t) dt = 3.432$

OR

$x(t) = -\frac{3}{\pi} \cos \left(\frac{\pi}{3} t \right) + \frac{3}{\pi} + 2$

$x(4) = 2 + \frac{9}{2\pi} = 3.432$
Question 4

A particle moves along the x-axis with velocity at time $t \geq 0$ given by $v(t) = -1 + e^{1-t}$.

(a) Find the acceleration of the particle at time $t = 3$.

(b) Is the speed of the particle increasing at time $t = 3$? Give a reason for your answer.

(c) Find all values of t at which the particle changes direction. Justify your answer.

(d) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 3$.

(a) $a(t) = v'(t) = -e^{1-t}$

$$a(3) = -e^{-2}$$

(b) $a(3) < 0$

$v(3) = -1 + e^{-2} < 0$

Speed is increasing since $v(3) < 0$ and $a(3) < 0$.

(c) $v(t) = 0$ when $1 = e^{1-t}$, so $t = 1$.

$v(t) > 0$ for $t < 1$ and $v(t) < 0$ for $t > 1$.

Therefore, the particle changes direction at $t = 1$.

(d) Distance = $\int_0^3 |v(t)| \, dt$

$$= \int_0^1 (-1 + e^{1-t}) \, dt + \int_1^3 (1 - e^{1-t}) \, dt$$

$$= \left[-t - e^{1-t} \right]_0^1 + \left[t + e^{1-t} \right]_1^3$$

$$= (-1 - 1 + e) + (3 + e^{-2} - 1 - 1)$$

$$= e + e^{-2} - 1$$

OR

$x(t) = -t - e^{1-t}$

$x(0) = -e$

$x(1) = -2$

$x(3) = -e^{-2} - 3$

Distance = $(x(1) - x(0)) + (x(1) - x(3))$

$$= (-2 + e) + (1 + e^{-2})$$

$$= e + e^{-2} - 1$$

OR

1 : any antiderivative

1 : evaluates $x(t)$ when $t = 0, 1, 3$

4 : 1 : evaluates distance between points

1 : evaluates total distance
A particle moves along the x-axis so that its velocity at time t is given by

$$v(t) = -(t + 1)\sin\left(\frac{t^2}{2}\right).$$

At time $t = 0$, the particle is at position $x = 1$.

(a) Find the acceleration of the particle at time $t = 2$. Is the speed of the particle increasing at $t = 2$? Why or why not?

(b) Find all times t in the open interval $0 < t < 3$ when the particle changes direction. Justify your answer.

(c) During the time interval $0 \leq t \leq 3$, what is the greatest distance between the particle and the origin? Show the work that leads to your answer.

| (a) $a(2) = v'(2) = 1.587$ or 1.588 | \{1: \begin{align*} &a(2) \\ &2: \begin{cases} 1: \text{speed decreasing} \\ &2: \begin{cases} 1: \text{with reason} \\ &2: \begin{cases} 1: t = \sqrt{2\pi} \text{ only} \\ &1: \text{justification} \end{cases} \end{cases} \end{cases} \end{align*} \\
$v(2) = -3\sin(2) < 0$	Speed is decreasing since $a(2) > 0$ and $v(2) < 0$.		
\begin{align*} &v(t) = 0 \text{ when } \frac{t^2}{2} = \pi \\ &t = \sqrt{2\pi} \text{ or } 2.506 \text{ or } 2.507 \end{align*}	\begin{align*} &2: \begin{cases} 1: t = \sqrt{2\pi} \text{ only} \\ &1: \text{justification} \end{cases} \end{align*}		
Since $v(t) < 0$ for $0 < t < \sqrt{2\pi}$ and $v(t) > 0$ for $\sqrt{2\pi} < t < 3$, the particle changes directions at $t = \sqrt{2\pi}$.	\begin{align*} &c: \begin{cases} 1: \text{limits} \\ &3: \begin{cases} 1: \text{integrand} \\ &1: \text{answer} \end{cases} \end{cases} \end{align*}		
(c) Distance $= \int_0^3	v(t)	\, dt = 4.333$ or 4.334	\begin{align*} &d: \begin{cases} 1: \pm \ (\text{distance particle travels} \\ &2: \begin{cases} 1: \text{answer} \end{cases} \end{cases} \end{align*}
(d) $\int_0^{\sqrt{2\pi}} v(t) \, dt = -3.265$	$x(\sqrt{2\pi}) = x(0) + \int_0^{\sqrt{2\pi}} v(t) \, dt = -2.265$		
Since the total distance from $t = 0$ to $t = 3$ is 4.334, the particle is still to the left of the origin at $t = 3$. Hence the greatest distance from the origin is 2.265.			
A particle moves along the y-axis so that its velocity v at time $t \geq 0$ is given by $v(t) = 1 - \tan^{-1}(e^t)$.

At time $t = 0$, the particle is at $y = -1$. (Note: $\tan^{-1}x = \arctan x$)

(a) Find the acceleration of the particle at time $t = 2$.

(b) Is the speed of the particle increasing or decreasing at time $t = 2$? Give a reason for your answer.

(c) Find the time $t \geq 0$ at which the particle reaches its highest point. Justify your answer.

(d) Find the position of the particle at time $t = 2$. Is the particle moving toward the origin or away from the origin at time $t = 2$? Justify your answer.

(a) $a(2) = v'(2) = -0.132$ or -0.133

(b) $v(2) = -0.436$

Speed is increasing since $a(2) < 0$ and $v(2) < 0$.

(c) $v(t) = 0$ when $\tan^{-1}(e^t) = 1$

$t = \ln(\tan(1)) = 0.443$ is the only critical value for y.

$v(t) > 0$ for $0 < t < \ln(\tan(1))$

$v(t) < 0$ for $t > \ln(\tan(1))$

$y(t)$ has an absolute maximum at $t = 0.443$.

(d) $y(2) = -1 + \int_0^2 v(t) \, dt = -1.360$ or -1.361

The particle is moving away from the origin since $v(2) < 0$ and $y(2) < 0$.

1 : answer

1 : answer with reason

1 : answer with reason

1 : handles initial condition

1 : value of $y(2)$
A particle moves along the x-axis so that its velocity \(v \) at time \(t \), for \(0 \leq t \leq 5 \), is given by
\[v(t) = \ln \left(t^2 - 3t + 3 \right). \]
The particle is at position \(x = 8 \) at time \(t = 0 \).

(a) Find the acceleration of the particle at time \(t = 4 \).

(b) Find all times \(t \) in the open interval \(0 < t < 5 \) at which the particle changes direction. During which time intervals, for \(0 \leq t \leq 5 \), does the particle travel to the left?

(c) Find the position of the particle at time \(t = 2 \).

(d) Find the average speed of the particle over the interval \(0 \leq t \leq 2 \).

(a) \(a(4) = v'(4) = \frac{5}{7} \)

(b) \(v(t) = 0 \)
\[t^2 - 3t + 3 = 1 \]
\[t^2 - 3t + 2 = 0 \]
\[(t-2)(t-1) = 0 \]
\[t = 1, 2 \]
\(v(t) > 0 \) for \(0 < t < 1 \)
\(v(t) < 0 \) for \(1 < t < 2 \)
\(v(t) > 0 \) for \(2 < t < 5 \)

The particle changes direction when \(t = 1 \) and \(t = 2 \).

The particle travels to the left when \(1 < t < 2 \).

(c) \(s(t) = s(0) + \int_0^t \ln \left(u^2 - 3u + 3 \right) \, du \)
\[s(2) = 8 + \int_0^2 \ln \left(u^2 - 3u + 3 \right) \, du \]
\[= 8.368 \text{ or } 8.369 \]

(d) \[\frac{1}{2} \int_0^2 |v(t)| \, dt = 0.370 \text{ or } 0.371 \]
A particle moves along the x-axis so that its velocity v at time $t \geq 0$ is given by $v(t) = \sin(t^2)$. The graph of v is shown above for $0 \leq t \leq \sqrt{5\pi}$. The position of the particle at time t is $x(t)$ and its position at time $t = 0$ is $x(0) = 5$.

(a) Find the acceleration of the particle at time $t = 3$.
(b) Find the total distance traveled by the particle from time $t = 0$ to $t = 3$.
(c) Find the position of the particle at time $t = 3$.
(d) For $0 \leq t \leq \sqrt{5\pi}$, find the time t at which the particle is farthest to the right. Explain your answer.

(a) $a(3) = v'(3) = 6\cos 9 = -5.466$ or -5.467

(b) Distance $= \int_0^3 |v(t)| \, dt = 1.702$

OR

For $0 < t < 3$, $v(t) = 0$ when $t = \sqrt{\pi} = 1.77245$ and $t = \sqrt{2\pi} = 2.50663$

$x(0) = 5$

$x(\sqrt{\pi}) = 5 + \int_0^{\sqrt{\pi}} v(t) \, dt = 5.89483$

$x(\sqrt{2\pi}) = 5 + \int_0^{\sqrt{2\pi}} v(t) \, dt = 5.43041$

$x(3) = 5 + \int_0^3 v(t) \, dt = 5.77356$

$|x(\sqrt{\pi}) - x(0)| + |x(\sqrt{2\pi}) - x(\sqrt{\pi})| + |x(3) - x(\sqrt{2\pi})| = 1.702$

(c) $x(3) = 5 + \int_0^3 v(t) \, dt = 5.773$ or 5.774

(d) The particle’s rightmost position occurs at time $t = \sqrt{\pi} = 1.772$.

The particle changes from moving right to moving left at those times t for which $v(t) = 0$ with $v(t)$ changing from positive to negative, namely at $t = \sqrt{\pi}, \sqrt{3\pi}, \sqrt{5\pi}$ ($t = 1.772, 3.070, 3.963$).

Using $x(T) = 5 + \int_0^T v(t) \, dt$, the particle’s positions at the times it changes from rightward to leftward movement are:

$T: \quad 0 \quad \sqrt{\pi} \quad \sqrt{3\pi} \quad \sqrt{5\pi}$

$x(T): \quad 5 \quad 5.895 \quad 5.788 \quad 5.752$

The particle is farthest to the right when $T = \sqrt{\pi}$.
A particle moves along the x-axis with position at time \(t \) given by \(x(t) = e^{-t} \sin t \) for \(0 \leq t \leq 2\pi \).

(a) Find the time \(t \) at which the particle is farthest to the left. Justify your answer.

(b) Find the value of the constant \(A \) for which \(x(t) \) satisfies the equation \(Ax''(t) + x'(t) + x(t) = 0 \) for \(0 < t < 2\pi \).

(a) \(x'(t) = -e^{-t} \sin t + e^{-t} \cos t = e^{-t} (\cos t - \sin t) \)

\(x'(t) = 0 \) when \(\cos t = \sin t \). Therefore, \(x'(t) = 0 \) on

\[0 \leq t \leq 2\pi \] for \(t = \frac{\pi}{4} \) and \(t = \frac{5\pi}{4} \).

The candidates for the absolute minimum are at \(t = 0, \frac{\pi}{4}, \frac{5\pi}{4}, \) and \(2\pi \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(e^0 \sin(0) = 0)</td>
</tr>
<tr>
<td>(\frac{\pi}{4})</td>
<td>(e^{-\frac{\pi}{4}} \sin\left(\frac{\pi}{4}\right) > 0)</td>
</tr>
<tr>
<td>(\frac{5\pi}{4})</td>
<td>(e^{-\frac{5\pi}{4}} \sin\left(\frac{5\pi}{4}\right) < 0)</td>
</tr>
<tr>
<td>2\pi</td>
<td>(e^{-2\pi} \sin(2\pi) = 0)</td>
</tr>
</tbody>
</table>

The particle is farthest to the left when \(t = \frac{5\pi}{4} \).

(b) \(x''(t) = -e^{-t} (\cos t - \sin t) + e^{-t} (-\sin t - \cos t) \)

\[= -2e^{-t} \cos t \]

\(Ax''(t) + x'(t) + x(t) \)

\[= A(-2e^{-t} \cos t) + e^{-t} (\cos t - \sin t) + e^{-t} \sin t \]

\[= (-2A + 1)e^{-t} \cos t \]

\[= 0 \]

Therefore, \(A = \frac{1}{2} \).
A particle moves along the \(x \)-axis in such a way that its acceleration at time \(t \) for \(t \geq 0 \) is given by \(a(t) = 4 \cos(2t) \). At time \(t = 0 \), the velocity of the particle is \(v(0) = 1 \) and its position is \(x(0) = 0 \).

(a) Write an equation for the velocity \(v(t) \) of the particle.

(b) Write an equation for the position \(x(t) \) of the particle.

(c) For what values of \(t \), \(0 \leq t \leq \pi \), is the particle at rest?
1989 AB3
Solution

(a) \(v(t) = \int 4 \cos 2t \ dt \)
\(v(t) = 2 \sin 2t + C \)
\(v(0) = 1 \Rightarrow C = 1 \)
\(v(t) = 2 \sin 2t + 1 \)

(b) \(x(t) = \int 2 \sin 2t + 1 \ dt \)
\(x(t) = -\cos 2t + t + C \)
\(x(0) = 0 \Rightarrow C = 1 \)
\(x(t) = -\cos 2t + t + 1 \)

(c) \(2 \sin 2t + 1 = 0 \)
\(\sin 2t = -\frac{1}{2} \)
\(2t = \frac{7\pi}{6}, \frac{11\pi}{6} \)
\(t = \frac{7\pi}{12}, \frac{11\pi}{12} \)
Let \(f \) be a function that is continuous on the interval \([0, 4)\). The function \(f \) is twice differentiable except at \(x = 2 \). The function \(f \) and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of \(f \) do not exist at \(x = 2 \).

(a) For \(0 < x < 4 \), find all values of \(x \) at which \(f \) has a relative extremum. Determine whether \(f \) has a relative maximum or a relative minimum at each of these values. Justify your answer.

(b) On the axes provided, sketch the graph of a function that has all the characteristics of \(f \). (Note: Use the axes provided in the pink test booklet.)

(c) Let \(g \) be the function defined by \(g(x) = \int_0^x f(t) \, dt \) on the open interval \((0, 4)\). For \(0 < x < 4 \), find all values of \(x \) at which \(g \) has a relative extremum. Determine whether \(g \) has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function \(g \) defined in part (c), find all values of \(x \), for \(0 < x < 4 \), at which the graph of \(g \) has a point of inflection. Justify your answer.
The functions \(f \) and \(g \) are differentiable for all real numbers, and \(g \) is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of \(x \). The function \(h \) is given by \(h(x) = f(g(x)) - 6 \).

(a) Explain why there must be a value \(r \) for \(1 < r < 3 \) such that \(h(r) = -5 \).

(b) Explain why there must be a value \(c \) for \(1 < c < 3 \) such that \(h'(c) = -5 \).

(c) Let \(w \) be the function given by \(w(x) = \int_1^x f(t) \, dt \). Find the value of \(w'(3) \).

(d) If \(g^{-1} \) is the inverse function of \(g \), write an equation for the line tangent to the graph of \(y = g^{-1}(x) \) at \(x = 2 \).

\[
\begin{array}{|c|c|c|c|c|}
\hline
x & f(x) & f'(x) & g(x) & g'(x) \\
\hline
1 & 6 & 4 & 2 & 5 \\
2 & 9 & 2 & 3 & 1 \\
3 & 10 & -4 & 4 & 2 \\
4 & -1 & 3 & 6 & 7 \\
\hline
\end{array}
\]

\[
\begin{array}{l}
\text{Since } h(3) < -5 < h(1) \text{ and } h \text{ is continuous, by the Intermediate Value Theorem, there exists a value } r, \text{ } 1 < r < 3, \text{ such that } h(r) = -5.
\\
\text{Since } h \text{ is continuous and differentiable, by the Mean Value Theorem, there exists a value } c, \text{ } 1 < c < 3, \text{ such that } h'(c) = -5.
\\
w'(3) = f(g(3)) \cdot g'(3) = f(4) \cdot 2 = -2
\\
g(1) = 2, \text{ so } g^{-1}(2) = 1.
\end{array}
\]

\[
\begin{array}{l}
\left(g^{-1}\right)'(2) = \frac{1}{g'(g^{-1}(2))} = \frac{1}{g'(1)} = \frac{1}{5}
\\
\text{An equation of the tangent line is } y - 1 = \frac{1}{5}(x - 2).
\end{array}
\]
Let f be a function that is even and continuous on the closed interval $[-3,3]$. The function f and its derivatives have the properties indicated in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>$0 < x < 1$</th>
<th>1</th>
<th>$1 < x < 2$</th>
<th>2</th>
<th>$2 < x < 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>1</td>
<td>Positive</td>
<td>0</td>
<td>Negative</td>
<td>-1</td>
<td>Negative</td>
</tr>
<tr>
<td>$f'(x)$</td>
<td>Undefined</td>
<td>Negative</td>
<td>0</td>
<td>Negative</td>
<td>Undefined</td>
<td>Positive</td>
</tr>
<tr>
<td>$f''(x)$</td>
<td>Undefined</td>
<td>Positive</td>
<td>0</td>
<td>Negative</td>
<td>Undefined</td>
<td>Negative</td>
</tr>
</tbody>
</table>

(a) Find the x-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each x-coordinate you give, state whether f attains an absolute maximum or an absolute minimum.

(b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.

(c) In the xy-plane provided below, sketch the graph of a function with all the given characteristics of f.

![Graph of a function](image-url)
(a) Absolute maximum at $x = 0$
Absolute minimum at $x = \pm 2$

(b) Points of inflection at $x = \pm 1$ because the sign of $f''(x)$ changes at $x = 1$
and f is even

(c)
AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 6

<table>
<thead>
<tr>
<th>x</th>
<th>-1.5</th>
<th>-1.0</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>-1</td>
<td>-4</td>
<td>-6</td>
<td>-7</td>
<td>-6</td>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td>$f'(x)$</td>
<td>-7</td>
<td>-5</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f''(x) > 0$ for $-1.5 \leq x \leq 1.5$.

(a) Evaluate $\int_{0}^{1.5} (3f'(x) + 4) dx$. Show the work that leads to your answer.

(b) Write an equation of the line tangent to the graph of f at the point where $x = 1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$? Give a reason for your answer.

(c) Find a positive real number r having the property that there must exist a value c with $0 < c < 0.5$ and $f''(c) = r$. Give a reason for your answer.

(d) Let g be the function given by $g(x) = \begin{cases} 2x^2 - x - 7 & \text{for } x < 0 \\ 2x^2 + x - 7 & \text{for } x \geq 0. \end{cases}$

The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

(a) $\int_{0}^{1.5} (3f'(x) + 4) dx = 3\int_{0}^{1.5} f'(x) dx + \int_{0}^{1.5} 4 dx$

$= 3f(x) + 4x \bigg|^{1.5}_{0} = 3(-1 - (-7)) + 4(1.5) = 24$

(b) $y = 5(x - 1) - 4$

$f(1.2) \approx 5(0.2) - 4 = -3$

The approximation is less than $f(1.2)$ because the graph of f is concave up on the interval $1 < x < 1.2$.

(c) By the Mean Value Theorem there is a c with $0 < c < 0.5$ such that $f''(c) = \frac{f'(0.5) - f'(0)}{0.5 - 0} = \frac{3 - 0}{0.5} = 6 = r$

(d) $\lim_{x \to 0^-} g'(x) = \lim_{x \to 0^-} (4x - 1) = -1$

$\lim_{x \to 0^+} g'(x) = \lim_{x \to 0^+} (4x + 1) = +1$

Thus g' is not continuous at $x = 0$, but f' is continuous at $x = 0$, so $f \neq g$.

OR

$g''(x) = 4$ for all $x \neq 0$, but it was shown in part (c) that $f''(c) = 6$ for some $c \neq 0$, so $f \neq g$.

| 1 | antiderivative
| 2 | answer
| 1 | tangent line
| 3 | computes y on tangent line at $x = 1.2$
| 1 | answer with reason
| 1 | reference to MVT for f' (or differentiability of f')
| 2 | value of r for interval $0 \leq x \leq 0.5$
| 1 | answers “no” with reference to g' or g''
| 1 | correct reason
Let \(f \) be the function given by \(f(x) = 2xe^{2x} \).

(a) Find \(\lim_{x \to -\infty} f(x) \) and \(\lim_{x \to \infty} f(x) \).

(b) Find the absolute minimum value of \(f \). Justify that your answer is an absolute minimum.

(c) What is the range of \(f \)?

(d) Consider the family of functions defined by \(y = bxe^{bx} \), where \(b \) is a nonzero constant. Show that the absolute minimum value of \(bxe^{bx} \) is the same for all nonzero values of \(b \).

<table>
<thead>
<tr>
<th>Part</th>
<th>Score Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1: (\lim_{x \to -\infty} f(x) = 0) (\lim_{x \to \infty} f(x) = \infty) or DNE</td>
</tr>
<tr>
<td></td>
<td>2 (1:) as (x \to -\infty) (1:) (\infty) or DNE as (x \to \infty)</td>
</tr>
<tr>
<td></td>
<td>3 (1:) solves (f'(x) = 0) (1:) evaluates (f) at student’s critical point (0/1) if not local minimum from student’s derivative</td>
</tr>
<tr>
<td></td>
<td>3 (1:) justifies absolute minimum value (0/1) for a local argument (0/1) without explicit symbolic derivative</td>
</tr>
<tr>
<td></td>
<td>Note: 0/3 if no absolute minimum based on student’s derivative</td>
</tr>
<tr>
<td></td>
<td>1: answer</td>
</tr>
<tr>
<td></td>
<td>Note: must include the left–hand endpoint; exclude the right–hand “endpoint”</td>
</tr>
<tr>
<td></td>
<td>1: sets (y' = be^{bx}(1 + bx) = 0) (1:) solves student’s (y' = 0)</td>
</tr>
<tr>
<td></td>
<td>3 (1:) evaluates (y) at a critical number (0/1) and gets a value independent of (b)</td>
</tr>
<tr>
<td></td>
<td>Note: 0/3 if only considering specific values of (b)</td>
</tr>
</tbody>
</table>
A cubic polynomial function \(f \) is defined by

\[f(x) = 4x^3 + ax^2 + bx + k \]

where \(a, b, \) and \(k \) are constants. The function \(f \) has a local minimum at \(x = -1 \), and the graph of \(f \) has a point of inflection at \(x = -2 \).

(a) Find the values of \(a \) and \(b \).

(b) If \(\int_{0}^{1} f(x) \, dx = 32 \), what is the value of \(k \) ?

\[
\begin{align*}
(a) \quad f'(x) &= 12x^2 + 2ax + b \\
f''(x) &= 24x + 2a \\
f'(-1) &= 12 - 2a + b = 0 \\
f''(-2) &= -48 + 2a = 0 \\
\end{align*}
\]

\[
\begin{align*}
a &= 24 \\
b &= -12 + 2a = 36 \\
\end{align*}
\]

\[
\begin{align*}
(b) \quad \int_{0}^{1} (4x^3 + 24x^2 + 36x + k) \, dx \\
&= x^4 + 8x^3 + 18x^2 + kx \bigg|_{x=0}^{x=1} = 27 + k \\
27 + k &= 32 \\
k &= 5 \\
\end{align*}
\]
Question 4

Let \(h \) be a function defined for all \(x \neq 0 \) such that \(h(4) = -3 \) and the derivative of \(h \) is given by \(h'(x) = \frac{x^2 - 2}{x} \) for all \(x \neq 0 \).

(a) Find all values of \(x \) for which the graph of \(h \) has a horizontal tangent, and determine whether \(h \) has a local maximum, a local minimum, or neither at each of these values. Justify your answers.

(b) On what intervals, if any, is the graph of \(h \) concave up? Justify your answer.

(c) Write an equation for the line tangent to the graph of \(h \) at \(x = 4 \).

(d) Does the line tangent to the graph of \(h \) at \(x = 4 \) lie above or below the graph of \(h \) for \(x > 4 \)? Why?

(a) \(h'(x) = 0 \) at \(x = \pm \sqrt{2} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\sqrt{2})</th>
<th>(0)</th>
<th>(\sqrt{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h'(x))</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>(h''(x))</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Local minima at \(x = -\sqrt{2} \) and at \(x = \sqrt{2} \)

(b) \(h''(x) = 1 + \frac{2}{x^2} > 0 \) for all \(x \neq 0 \). Therefore, the graph of \(h \) is concave up for all \(x \neq 0 \).

(c) \(h'(4) = \frac{16 - 2}{4} = \frac{7}{2} \)

\[y + 3 = \frac{7}{2}(x - 4) \]

(d) The tangent line is below the graph because the graph of \(h \) is concave up for \(x > 4 \).
Let \(f \) be the function defined by
\[
 f(x) = \begin{cases}
 \sqrt{x} + 1 & \text{for } 0 \leq x \leq 3 \\
 5 - x & \text{for } 3 < x \leq 5.
\end{cases}
\]

(a) Is \(f \) continuous at \(x = 3 \)? Explain why or why not.

(b) Find the average value of \(f(x) \) on the closed interval \(0 \leq x \leq 5 \).

(c) Suppose the function \(g \) is defined by
\[
 g(x) = \begin{cases}
 k\sqrt{x} + 1 & \text{for } 0 \leq x \leq 3 \\
 mx + 2 & \text{for } 3 < x \leq 5,
\end{cases}
\]
where \(k \) and \(m \) are constants. If \(g \) is differentiable at \(x = 3 \), what are the values of \(k \) and \(m \)?

(a) \(f \) is continuous at \(x = 3 \) because
\[
 \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = 2.
\]
Therefore, \(\lim_{x \to 3} f(x) = 2 = f(3) \).

(b) \[
\int_0^5 f(x) \, dx = \int_0^3 f(x) \, dx + \int_3^5 f(x) \, dx
= \left[\frac{2}{3}(x + 1)^{3/2} \right]_0^3 + \left(5x - \frac{1}{2}x^2 \right) \bigg|_3^5
= \left(\frac{16}{3} - \frac{2}{3} \right) + \left(\frac{25}{2} - \frac{21}{2} \right) = \frac{20}{3}
\]

Average value: \[
\frac{1}{5} \int_0^5 f(x) \, dx = \frac{4}{3}
\]

(c) Since \(g \) is continuous at \(x = 3 \), \(2k = 3m + 2 \).
\[
g'(x) = \begin{cases}
 \frac{k}{2\sqrt{x} + 1} & \text{for } 0 < x < 3 \\
 \frac{m}{4} & \text{for } 3 < x < 5
\end{cases}
\]
\[
\lim_{x \to 3^-} g'(x) = \frac{k}{4} \quad \text{and} \quad \lim_{x \to 3^+} g'(x) = m
\]
Since these two limits exist and \(g \) is differentiable at \(x = 3 \), the two limits are equal. Thus \(\frac{k}{4} = m \).

\[
8m = 3m + 2 \quad ; \quad m = \frac{2}{5} \quad \text{and} \quad k = \frac{8}{5}
\]
Let \(f \) be the function defined by \(f(x) = k\sqrt{x} - \ln x \) for \(x > 0 \), where \(k \) is a positive constant.

(a) Find \(f'(x) \) and \(f''(x) \).

(b) For what value of the constant \(k \) does \(f \) have a critical point at \(x = 1 \)? For this value of \(k \), determine whether \(f \) has a relative minimum, relative maximum, or neither at \(x = 1 \). Justify your answer.

(c) For a certain value of the constant \(k \), the graph of \(f \) has a point of inflection on the \(x \)-axis. Find this value of \(k \).

\[
\begin{align*}
(a) \quad f'(x) &= \frac{k}{2\sqrt{x}} - \frac{1}{x} \\
\quad f''(x) &= -\frac{1}{4}kx^{-3/2} + x^{-2}
\end{align*}
\]

(b) \(f'(1) = \frac{1}{2}k - 1 = 0 \Rightarrow k = 2 \)

When \(k = 2 \), \(f'(1) = 0 \) and \(f''(1) = -\frac{1}{2} + 1 > 0 \).

\(f \) has a relative minimum value at \(x = 1 \) by the Second Derivative Test.

(c) At this inflection point, \(f''(x) = 0 \) and \(f(x) = 0 \).

\[
\begin{align*}
\quad f''(x) &= 0 \Rightarrow -\frac{k}{4x^{3/2}} + \frac{1}{x^2} = 0 \Rightarrow k = 4 \sqrt{x} \\
\quad f(x) &= 0 \Rightarrow k\sqrt{x} - \ln x = 0 \Rightarrow k = \frac{\ln x}{\sqrt{x}}
\end{align*}
\]

Therefore, \(\frac{4}{\sqrt{x}} = \frac{\ln x}{\sqrt{x}} \)

\(\Rightarrow 4 = \ln x \)

\(\Rightarrow x = e^4 \)

\(\Rightarrow k = \frac{4}{e^2} \)
Let f be the function given by $f(x) = \frac{\ln x}{x}$ for all $x > 0$. The derivative of f is given by $f'(x) = \frac{1 - \ln x}{x^2}$.

(a) Write an equation for the line tangent to the graph of f at $x = e^2$.
(b) Find the x-coordinate of the critical point of f. Determine whether this point is a relative minimum, a relative maximum, or neither for the function f. Justify your answer.
(c) The graph of the function f has exactly one point of inflection. Find the x-coordinate of this point.
(d) Find $\lim_{x \to 0^+} f(x)$.

\[f(e^2) = \frac{\ln e^2}{e^2} = \frac{2}{e^2}, \quad f'(e^2) = \frac{1 - \ln e^2}{(e^2)^2} = -\frac{1}{e^4}\]

An equation for the tangent line is $y = \frac{2}{e^2} - \frac{1}{e^4}(x - e^2)$.

(b) $f'(x) = 0$ when $x = e$. The function f has a relative maximum at $x = e$ because $f'(x)$ changes from positive to negative at $x = e$.

(c) $f''(x) = \frac{-1}{x}x^2 - \frac{(1 - \ln x)2x}{x^4} = -\frac{3 + 2\ln x}{x^3}$ for all $x > 0$

$f''(x) = 0$ when $-3 + 2\ln x = 0$

$x = e^{3/2}$

The graph of f has a point of inflection at $x = e^{3/2}$ because $f''(x)$ changes sign at $x = e^{3/2}$.

(d) $\lim_{x \to 0^+} \frac{\ln x}{x} = -\infty$ or Does Not Exist
4. Suppose that the function f has a continuous second derivative for all x, and that $f(0) = 2$, $f'(0) = -3$, and $f''(0) = 0$. Let g be a function whose derivative is given by $g'(x) = e^{-2x}(3f(x) + 2f'(x))$ for all x.

(a) Write an equation of the line tangent to the graph of f at the point where $x = 0$.

(b) Is there sufficient information to determine whether or not the graph of f has a point of inflection when $x = 0$? Explain your answer.

(c) Given that $g(0) = 4$, write an equation of the line tangent to the graph of g at the point where $x = 0$.

(d) Show that $g''(x) = e^{-2x}(-6f(x) - f'(x) + 2f''(x))$. Does g have a local maximum at $x = 0$? Justify your answer.

(a) Slope at $x = 0$ is $f'(0) = -3$

At $x = 0$, $y = 2$

$y - 2 = -3(x - 0)$

(b) No. Whether $f''(x)$ changes sign at $x = 0$ is unknown. The only given value of $f''(x)$ is $f''(0) = 0$.

(c) $g'(x) = e^{-2x}(3f(x) + 2f'(x))$

$g'(0) = e^0(3f(0) + 2f'(0))$

$= 3(2) + 2(-3) = 0$

$y - 4 = 0(x - 0)$

$y = 4$

(d) $g'(x) = e^{-2x}(3f(x) + 2f'(x))$

$g'(x) = (-2e^{-2x})(3f(x) + 2f'(x))$

$+ e^{-2x}(3f'(x) + 2f''(x))$

$= e^{-2x}(-6f(x) - f'(x) + 2f''(x))$

$g'(0) = e^0[(-6)(2) - (-3) + 2(0)] = -9$

Since $g'(0) = 0$ and $g''(0) < 0$, g does have a local maximum at $x = 0$.

1: equation

2

1: answer

1: explanation

2

1: $g'(0)$

1: equation

2: verify derivative

$0/2$ product or chain rule error

< -1 algebra errors

1: $g'(0) = 0$ and $g''(0)$

1: answer and reasoning
Let f be the function satisfying $f'(x) = x\sqrt{f(x)}$ for all real numbers x, where $f(3) = 25$.

(a) Find $f''(3)$.

(b) Write an expression for $y = f(x)$ by solving the differential equation $\frac{dy}{dx} = x\sqrt{y}$ with the initial condition $f(3) = 25$.

\[f''(x) = \frac{\sqrt{f(x)} + \frac{x^2}{2\sqrt{f(x)}}}{2} = \frac{\sqrt{f(x)}}{2} + \frac{x^2}{4} \]

\[f''(3) = \sqrt{25} + \frac{9}{2} = \frac{19}{2} \]

\[y = \left(\frac{1}{4}x^2 + \frac{11}{4}\right)^2 = \frac{1}{16}(x^2 + 11)^2 \]
The twice-differentiable function f is defined for all real numbers and satisfies the following conditions:

$$f(0) = 2, \quad f'(0) = -4, \quad \text{and} \quad f''(0) = 3.$$

(a) The function g is given by $g(x) = e^{ax} + f(x)$ for all real numbers, where a is a constant. Find $g'(0)$ and $g''(0)$ in terms of a. Show the work that leads to your answers.

(b) The function h is given by $h(x) = \cos(kx)f(x)$ for all real numbers, where k is a constant. Find $h'(x)$ and write an equation for the line tangent to the graph of h at $x = 0$.

(a)

$$g'(x) = ae^{ax} + f'(x)$$

$$g'(0) = a - 4$$

$$g''(x) = a^2e^{ax} + f''(x)$$

$$g''(0) = a^2 + 3$$

(b)

$$h'(x) = f'(x)\cos(kx) - k\sin(kx)f(x)$$

$$h'(0) = f'(0)\cos(0) - k\sin(0)f(0) = f'(0) = -4$$

$$h(0) = \cos(0)f(0) = 2$$

The equation of the tangent line is $y = -4x + 2$.
Let \(f \) be a twice-differentiable function such that \(f(2) = 5 \) and \(f(5) = 2 \). Let \(g \) be the function given by \(g(x) = f(f(x)) \).

(a) Explain why there must be a value \(c \) for \(2 < c < 5 \) such that \(f'(c) = -1 \).

(b) Show that \(g'(2) = g'(5) \). Use this result to explain why there must be a value \(k \) for \(2 < k < 5 \) such that \(g''(k) = 0 \).

(c) Show that if \(f''(x) = 0 \) for all \(x \), then the graph of \(g \) does not have a point of inflection.

(d) Let \(h(x) = f(x) - x \). Explain why there must be a value \(r \) for \(2 < r < 5 \) such that \(h(r) = 0 \).

Solution:

(a) The Mean Value Theorem guarantees that there is a value \(c \), with \(2 < c < 5 \), so that
\[
f'(c) = \frac{f(5) - f(2)}{5 - 2} = \frac{2 - 5}{5 - 2} = -1.
\]

(b) \(g'(x) = f'(f(x)) \cdot f'(x) \)
\[
g'(2) = f'(f(2)) \cdot f'(2) = f'(5) \cdot f'(2)
g'(5) = f'(f(5)) \cdot f'(5) = f'(2) \cdot f'(5)
\]
Thus, \(g'(2) = g'(5) \).

Since \(f \) is twice-differentiable, \(g' \) is differentiable everywhere, so the Mean Value Theorem applied to \(g' \) on \([2, 5]\) guarantees there is a value \(k \), with \(2 < k < 5 \), such that \(g''(k) = \frac{g'(5) - g'(2)}{5 - 2} = 0 \).

(c) \(g''(x) = f''(f(x)) \cdot f'(x) \cdot f''(f(x)) + f'(f(x)) \cdot f''(x) \)

If \(f''(x) = 0 \) for all \(x \), then
\[
g''(x) = 0 \cdot f'(x) \cdot f''(f(x)) + f'(f(x)) \cdot 0 = 0 \text{ for all } x.
\]
Thus, there is no \(x \)-value at which \(g''(x) \) changes sign, so the graph of \(g \) has no inflection points.

OR
If \(f''(x) = 0 \) for all \(x \), then \(f \) is linear, so \(g = f \circ f \) is linear and the graph of \(g \) has no inflection points.

(d) Let \(h(x) = f(x) - x \).
\[
h(2) = f(2) - 2 = 5 - 2 = 3
\]
\[
h(5) = f(5) - 5 = 2 - 5 = -3
\]
Since \(h(2) > 0 > h(5) \), the Intermediate Value Theorem guarantees that there is a value \(r \), with \(2 < r < 5 \), such that \(h(r) = 0 \).
6. In the figure above, line l is tangent to the graph of $y = \frac{1}{x^2}$ at point P, with coordinates $\left(w, \frac{1}{w^2} \right)$, where $w > 0$. Point Q has coordinates $(w, 0)$. Line l crosses the x-axis at the point R, with coordinates $(k, 0)$.

(a) Find the value of k when $w = 3$.
(b) For all $w > 0$, find k in terms of w.
(c) Suppose that w is increasing at the constant rate of 7 units per second. When $w = 5$, what is the rate of change of k with respect to time?
(d) Suppose that w is increasing at the constant rate of 7 units per second. When $w = 5$, what is the rate of change of the area of $\triangle PQR$ with respect to time? Determine whether the area is increasing or decreasing at this instant.

(a) \[
\frac{dy}{dx} = -\frac{2}{x^3}; \quad \frac{dy}{dx}\bigg|_{x=3} = -\frac{2}{27}.
\]

Line l through $\left(3, \frac{1}{9}\right)$ and $(k, 0)$ has slope $-\frac{2}{27}$.

Therefore, \[
0 - \frac{1}{9} \quad k - 3 = -\frac{2}{27} \quad \text{or} \quad 0 - \frac{1}{9} = -\frac{2}{27}(k - 3)
\]

\[k = \frac{9}{2}\]

(b) Line l through $\left(w, \frac{1}{w^2}\right)$ and $(k, 0)$ has slope $-\frac{2}{w^3}$.

Therefore, \[
0 - \frac{1}{w^2} \quad k - w = -\frac{2}{w^3} \quad \text{or} \quad 0 - \frac{1}{w^2} = -\frac{2}{w^3}(k - w)
\]

\[k = \frac{3}{2w}\]

(c) \[
\frac{dk}{dt} = \frac{3}{2} \frac{dw}{dt} = \frac{3}{2} \times 7 = \frac{21}{2}; \quad \frac{dk}{dt}\bigg|_{w=5} = \frac{21}{2}
\]

(d) \[
\begin{align*}
A &= \frac{1}{2}(k - w) \frac{1}{w^2} = \frac{1}{2} \left(\frac{3}{2}w - w\right) \frac{1}{w^2} = \frac{1}{4w} \\
\frac{dA}{dt} &= -\frac{1}{4w^2} \frac{dw}{dt} \\
\frac{dA}{dt}\bigg|_{w=5} &= -\frac{1}{100} \times 7 = -0.07
\end{align*}
\]

Therefore, area is decreasing.
Let f be the function given by $f(x) = 4x^2 - x^3$, and let ℓ be the line $y = 18 - 3x$, where ℓ is tangent to the graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ, and the x-axis, as shown above.

(a) Show that ℓ is tangent to the graph of $y = f(x)$ at the point $x = 3$.

(b) Find the area of S.

(c) Find the volume of the solid generated when R is revolved about the x-axis.

(a) $f'(x) = 8x - 3x^2$; $f'(3) = 24 - 27 = -3$

$f(3) = 36 - 27 = 9$

Tangent line at $x = 3$ is

$y = -3(x - 3) + 9 = -3x + 18$

which is the equation of line ℓ.

(b) $f(x) = 0$ at $x = 4$

The line intersects the x-axis at $x = 6$.

Area $= \frac{1}{2}(3)(9) - \int_3^4 (4x^2 - x^3)\,dx$

$= 7.916$ or 7.917

OR

Area $= \int_3^4 (18 - 3x - (4x^2 - x^3))\,dx$

$+ \frac{1}{2}(2)(18 - 12)$

$= 7.916$ or 7.917

(c) Volume $= \pi \int_0^4 (4x^2 - x^3)^2\,dx$

$= 156.038\pi$ or 490.208
Let \(\ell \) be the line tangent to the graph of \(y = x^n \) at the point \((1, 1)\), where \(n > 1 \), as shown above.

(a) Find \(\int_0^1 x^n \, dx \) in terms of \(n \).

(b) Let \(T \) be the triangular region bounded by \(\ell \), the \(x \)-axis, and the line \(x = 1 \). Show that the area of \(T \) is \(\frac{1}{2n} \).

(c) Let \(S \) be the region bounded by the graph of \(y = x^n \), the line \(\ell \), and the \(x \)-axis. Express the area of \(S \) in terms of \(n \) and determine the value of \(n \) that maximizes the area of \(S \).

(a) \[
\int_0^1 x^n \, dx = \left. \frac{x^{n+1}}{n+1} \right|_0^1 = \frac{1}{n+1}
\]

(b) Let \(b \) be the length of the base of triangle \(T \).

\[
\frac{1}{b} \text{ is the slope of line } \ell, \text{ which is } n
\]

Area\((T) = \frac{1}{2} b(1) = \frac{1}{2n}
\]

(c) Area\((S) = \int_0^1 x^n \, dx - \text{Area}(T) = \frac{1}{n+1} - \frac{1}{2n}
\]

\[
\frac{d}{dn}\text{Area}(S) = -\frac{1}{(n+1)^2} + \frac{1}{2n^2} = 0
\]

\[
2n^2 = (n+1)^2
\]

\[
\sqrt{2} n = (n+1)
\]

\[
n = \frac{1}{\sqrt{2} - 1} = 1 + \sqrt{2}
\]
The figure above is the graph of a function of \(x \), which models the height of a skateboard ramp. The function meets the following requirements.

(i) At \(x = 0 \), the value of the function is 0, and the slope of the graph of the function is 0.
(ii) At \(x = 4 \), the value of the function is 1, and the slope of the graph of the function is 1.
(iii) Between \(x = 0 \) and \(x = 4 \), the function is increasing.

(a) Let \(f(x) = ax^2 \), where \(a \) is a nonzero constant. Show that it is not possible to find a value for \(a \) so that \(f \) meets requirement (ii) above.

(b) Let \(g(x) = cx^3 - \frac{x^2}{16} \), where \(c \) is a nonzero constant. Find the value of \(c \) so that \(g \) meets requirement (ii) above. Show the work that leads to your answer.

(c) Using the function \(g \) and your value of \(c \) from part (b), show that \(g \) does not meet requirement (iii) above.

(d) Let \(h(x) = \frac{x^n}{k} \), where \(k \) is a nonzero constant and \(n \) is a positive integer. Find the values of \(k \) and \(n \) so that \(h \) meets requirement (ii) above. Show that \(h \) also meets requirements (i) and (iii) above.

(a) \(f(4) = 1 \) implies that \(a = \frac{1}{16} \) and \(f'(4) = 2a(4) = 1 \)
imples that \(a = \frac{1}{8} \). Thus, \(f \) cannot satisfy (ii).

(b) \(g(4) = 64c - 1 = 1 \) implies that \(c = \frac{1}{32} \).
When \(c = \frac{1}{32} \), \(g'(4) = 3c(4)^2 - \frac{2(4)}{16} = 3\left(\frac{1}{32}\right)(16) - \frac{1}{2} = 1 \)

(c) \(g'(x) = \frac{3}{32}x^2 - \frac{x}{8} = \frac{1}{32}x(3x - 4) \)
\(g'(x) < 0 \) for \(0 < x < \frac{4}{3} \), so \(g \) does not satisfy (iii).

(d) \(h(4) = \frac{4^n}{k} = 1 \) implies that \(4^n = k \).
\(h'(4) = \frac{n4^{n-1}}{k} = \frac{n4^{n-1}}{4^n} = \frac{n}{4} = 1 \) gives \(n = 4 \) and \(k = 4^4 = 256 \).
\(h(x) = \frac{x^4}{256} \Rightarrow h(0) = 0. \)
\(h'(x) = \frac{4x^3}{256} \Rightarrow h'(0) = 0 \) and \(h'(x) > 0 \) for \(0 < x < 4 \).
The functions \(f \) and \(g \) are given by \(f(x) = \int_0^3 \sqrt{4 + t^2} \, dt \) and \(g(x) = f(\sin x) \).

(a) Find \(f'(x) \) and \(g'(x) \).

(b) Write an equation for the line tangent to the graph of \(y = g(x) \) at \(x = \pi \).

(c) Write, but do not evaluate, an integral expression that represents the maximum value of \(g \) on the interval \(0 \leq x \leq \pi \). Justify your answer.

\[
\begin{align*}
(a) \quad f'(x) &= 3\sqrt{4 + (3x)^2} \\
g'(x) &= f'(\sin x) \cdot \cos x \\
&= 3\sqrt{4 + (3\sin x)^2} \cdot \cos x
\end{align*}
\]

\[
\begin{align*}
(b) \quad g(\pi) &= 0, \quad g'(\pi) = -6 \\
\text{Tangent line: } y &= -6(x - \pi)
\end{align*}
\]

\[
\begin{align*}
(c) \text{ For } 0 < x < \pi, \quad g'(x) &= 0 \text{ only at } x = \frac{\pi}{2}. \\
g(0) &= g(\pi) = 0 \\
g\left(\frac{\pi}{2}\right) &= \int_0^{\frac{\pi}{2}} \sqrt{4 + t^2} \, dt > 0 \\
\text{The maximum value of } g \text{ on } [0, \pi] \text{ is } & \int_0^{\frac{\pi}{2}} \sqrt{4 + t^2} \, dt.
\end{align*}
\]