Name \qquad
An example of a system of linear equations in two variables x and y is the following:

$$
\begin{array}{ll}
y=2 x+4 & \text { Equation 1 } \\
y=-3 x+44 & \text { Equation 2 }
\end{array}
$$

A solution of a system of equations in two variables is an ordered pair (x, y) that is a solution of both equations. One way to solve a system is to use the table feature of a graphing calculator.

EXPLORE Solve a system

Use a table to solve the system of equations above.

STEP 1 Enter equations
Press $\mathbf{Y}=$ to enter the equations. Enter
Equation 1 as y_{1}, and Equation 2 as y_{2}.

STEP 2 Make a table

Set the starting x-value of the table to 0 and the step value to 1 . Then use the table feature to make a table.

STEP 3 Find the solution

Scroll through the table until you find an x-value for which y_{1} and y_{2}, are equal. Use this x-value and y-value to write an ordered pair. This is the solution of the system. The solution of the system is $(8,20)$.

$8=11$

Solve each system of equations. For each system that has a single solution, show a table with the solution, a table row above it, and a table row below it like this:

If you cannot find a solution, you may need to change your table settings to tenths, or even hundredths. Change your table increment, by pressing $2^{\text {nd }}$, TBLSET, like this:

If you still cannot find a solution, explain why not.

Solve each system. Show a table for systems that have a solution(s) or an explanation for systems that do not have a solution.

1) $y=-3 x+4$
$y=8 x+4$
2) $y=-6 x-11$
$y=-3 x-5$
3) $y=-3 x-4$
$y=-5 x-10$
4) $y=4 x-29$
$y=-2 x+19$
5) $y=-8 x-14$
$y=9 x+3$
6) $y=4 x+12$
$y=-4 x-28$
7. $y=2 x+5$
$y=-x+2$
8. $y=4 x+1$
$y=4 x-8$
9. $y=4 x-3$
$y=x+1$
10. $y=2 x-3$
$y=x+1$
11. $8 x-4 y=16$
$-6 x+3 y=3$
12. $6 x-2 y=-2$
$-3 x-7 y=17$
13. $x+y=11$
$-x-y=-11$
14. $-2 x+y=5$
$y=-x+2$
15. $5 x+5 y=5$
$5 x+3 y=4.2$

Answer the following:

1. Why is it not possible for a linear system of equations to have exactly two solutions?
2. Why does the system in Exercise 13 have an infinite number of solutions?
3. If a system of linear equations in two variables has no solution, how would you describe the graphs of the equations in the system? Explain.
4. Describe the possible graphs of a system of linear equations in two variables. Relate the graphs to the possible number of solutions of such a system.
